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Executive summary
Predicting climate change impacts on extinction risk is challenging because it usually involves novel environments and 

always involves interactions with other threatening processes. Current approaches have limited capacity to include such 

complexities but they could strongly alter the effectiveness of proposed management actions and decisions about where 

and how to allocate management resources. We here demonstrate how the integration of state-of-the-art biophysical, 

distribution and population modelling approaches can account for the interactions between climate change and parallel 

threats while minimising extrapolation risk. We illustrate the approach using a threatened arboreal mammal, the Greater 

Glider, in the Central Highlands of Victoria, Australia. Our framework enabled us to combine the effects of wildfire, 

logging, and habitat fragmentation on populations, while accounting for physiological responses to climate change and 

their effect on vital rates,  Our results suggest additional population declines that would not be explicitly captured in other 

modelling methods. These methods are not specific to a particular taxa or location and may be applied anywhere in the 

world using open-source, and freely available, software. A major anticipated application of the framework is to identify 

appropriate management actions to conserve populations and assess their likely effectiveness through simulations.

Introduction
A range of strategies exist for modelling the distribution and abundance of species as a function of environmental 

conditions, and they vary according to the extent that processes are made explicit (Briscoe et al, 2019). At one 

extreme are correlative species distribution models (SDMs) which represent a statistical description of the association 

between occurrence and environment. At the other extreme are process-explicit models of individuals or populations 

that integrate theoretical and empirical knowledge of ecological systems. The increasing availability of data required 

for correlative SDMs and the ease of their implementation has made correlative SDMs a popular choice among 

researchers, environmental scientists, governments, and non-governmental organisations (Guissan et al. 2016). 

Correlative models are useful for broad characterisation of current (and future) species distributions but require 

careful consideration of data used to fit them to ensure appropriate use (Guillera-Arroita et al, 2015). Whilst correlative 

models are useful for broad characterisation of current (and future) species distributions, when used in isolation, they 

fail to explicitly consider biological processes (e.g. dispersal limits, species interactions) or anthropocentric impacts 

(e.g. habitat modification, roadkill). As modelling becomes more process-explicit, greater generality of inference and 

understanding is achieved but at the cost of greater data requirements. However, given the increasing complexity  

of managing species persistence in the face of climate change, land-use modification, and economic volatility,  

we must now look to model frameworks which incorporate processes in a practical yet meaningful manner.

Spatially explicit population modelling is a process-explicit method that can incorporate information about how 

populations change, interact with environmental effects, and disperse in a landscape (Dunning et al, 1995; Akçakaya 

et al. 2004, Wintle et al. 2005, Fordham et al, 2013). Such models have been used to better understand and predict 

the impacts on species persistence of dynamic land use change, including forest logging and fire, direct persecution 

of species, and climate change (Wintle et al. 2005, Bekessy et al. 2009, Keith et al. 2008, Fordham et al. 2013), and the 

relative benefits of alternative conservation actions (Southwell et al. 2008). In most cases, the use of population models 

entails the use of correlative SDM to characterise spatial and temporal variation in carrying capacity (Briscoe et al 2019). 

Biological input parameters to these models, particularly vital rates (e.g., survival and fecundity) are often sourced from 

historical empirical data and are therefore unknown for future conditions and often are assumed to be static or are 

modelled correlatively with environmental conditions. However, the link between environment and vital rates can be at 

least partially captured by explicitly modelling the physical processes by which physiology and environment interact to 

affect vital rates. For example, energy and mass balance equations from the field of biophysical ecology can be used to 

identify the fundamental niches of species with respect to their energy and water requirements for thermoregulation 

(Kearney and Porter 2009; Kearney et al., 2010). Such an approach can be used to more confidently predict  

future changes in vital rates (e.g. survival and fecundity) linked to changing climatic conditions.

Past model integration efforts have seen the linking of spatially explicit demographic models with correlative SDMs to 

predict impacts of land use and climate change (Wintle et al. 2005; Keith et al. 2008) and the potential to improve the 

robustness of such predictions by inferring demographic parameters from biophysical models has been identified (e.g. 

Buckley 2008, Kearney et al. 2010). However, this opportunity has yet to be properly exploited in the creation of spatially 

explicit population projections to better predict the impacts of climate and land use change (e.g. Buckley 2008, Kearney 

et al. 2010, Kearney 2012a). Here we demonstrate how linking biophysical models with models of landscape dynamics 

(LANDIS-II; Scheller et al., 2006) and population dynamics (STEPS; Visintin et al, 2020) can improve our understanding of 

future changes in species populations and inform management objectives. We demonstrate our modelling framework  

by projecting long-term persistence of the Australian arboreal marsupial glider in a changing climate and landscape.
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Methods
Study species
Greater gliders (Petauroides volans) are a large (900-1700 grams), arboreal possum capable of extended aerial 

travel and are found in forests along the east coast of Australia. Greater gliders (hereafter ‘gliders’) are vulnerable to 

environmental change because they have slow life history characteristics, low thermoregulatory capacity and their 

dispersal is limited by the presence of tree canopy (Taylor et al, 2007), They also have specialist habitat requirements 

including,  large tree hollows (and therefore mature forests) for nesting and nitrogen-rich leaves from specific eucalypt 

species for suitable forage (Wagner et al, 2021). They were recently listed as “vulnerable” under Australia’s EPBC Act 

(Commonwealth of Australia 1999) based on data showing population declines (Lindenmayer and Sato, 2018) and  

loss of habitat. Gliders face the cumulative impacts of a range of threats including habitat loss, fire and climate  

change (Wagner et al, 2021). 

Case study region 
Our modelling landscape was the 11,320 square kilometre (1,132,000 ha) Central Highlands region of south-east 

Australia (Figure 1). The region is predominantly native forest and the total area is equally split, and managed, for both 

conservation and wood production. The landscape dynamics in the area are well-characterised by existing models  

(e.g. response of tree species to wildfire and timber harvesting). Gliders have been known to occur across the entire 

region but there have been reported population declines (SAC, 2017). Previous modelling suggested that the area will 

remain climatically suitable for gliders in the future (Kearney et al, 2010) but it was focused on long-term mean climate 

and did not account for extremes. However, the observed decline of gliders appears to be correlated with high  

night-time temperatures in the region (Wagner et al, 2021). Thus, models incorporating finer temporal resolution  

of climatic variation may reveal important physical limitations on the gliders (Kearney et al. 2012b).

Figure 1. Central Highlands study area in Victoria, Australia. The area covers approximately one million hectares and is 

located within 40 kilometres of the Victorian capital city of Melbourne.
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Spatial and temporal extent
We used two spatial resolutions across the study region in our modelling framework: 11,320 grid-based cells (one 

square kilometre resolution) represented habitat suitability, landscape information, and potential populations; 520 grid-

based cells (twenty-five square kilometre resolution) represented information on future climate and predicted changes 

in survival and fecundity. The coarser biophysical modelling resolution was resampled to a finer resolution prior to use 

in the final population simulations. Biophysical simulations were made on hourly timesteps using disaggregated daily 

weather input data via a microclimate model, following Briscoe et al. (2016). All population simulations were based  

on annual timesteps spanning a 50-year time horizon, beginning in the year 2019 and going through the year 2069.

Weather data
We sourced daily climate projections from the Australian Commonwealth Scientific and Industrial Research 

Organisation (CSIRO) at 0.05 degree spatial resolution (Clarke et al, 2011) between the years 2016 and 2085 (which  

we clipped to our temporal extent of interest) for the Central Highlands region. Projections were based on the  

MIROC5 RCP8.5 model and included ambient air temperature (mean, minimum and maximum), relative humidity, 

precipitation, solar radiation, and air pressure. Wind speed was provided as mean monthly projections.

Landscape dynamics
Forest dynamics were modelled with LANDIS-II - used by Nitschke et al. (2020) to model the impact of fire, 

management and climate change on the critically endangered Leadbeater’s possum in a subregion of the study 

landscape. For our study, the full Central Highlands landscape was similarly modelled following the approach of Wang 

et al. (2017). Predictions of total biomass and fire locations, frequencies and severities from the LANDIS-II simulation 

at one square kilometre resolution for each year in the simulation period were generated. The model included future 

climate projections (RCP8.5), simulated wildfires and planned burning, and prescribed timber harvesting until the 

year 2030 (a current target of the Victorian state government policy). Nitschke et al. (2020) provide a more detailed 

description of wildfire, planned burning and timber harvesting parameters used in the simulations. 

Species distributions
Correlative SDMs were fitted to known glider presences and absences, and several climate and geographic 

environmental variables to provide spatially-explicit base information for our modelling framework. We used Boosted 

Regression Trees (Elith et al, 2008), a machine learning algorithm, to classify glider presences and absences based on 

both temporally-varying and static environmental variables. We then predicted relative habitat suitability for the species 

at one square kilometre resolution for each year in the simulation period. To estimate values for comparing to our 

population simulations, we multiplied the predicted suitability values by the maximum density of gliders (60) in each 

cell and summed the values across the landscape to generate a rough estimate of population change in each year.

Biophysical model
Physiological constraints on survival and reproduction of greater gliders were modelled using the R package 

NicheMapR (Kearney & Porter, 2017; Kearney & Porter, 2020). This is an R implementation of models initially  

developed by Porter et al. (1973, 2006), which were previously used to model the distribution of greater gliders across 

its Australian range (Kearney et al, 2010). A key advance is that we used the endoR function (Kearney et al. in review)  

to simulate responses to daily weather rather than long-term average monthly climate, as used in Kearney et al. (2010).  

This allowed us to account for the impact of weather extremes that can be important for understanding range 

dynamics of arboreal folivores (Briscoe et al. 2016; Wagner et al. 2020). Several parameters were also updated  

including fur and mass properties, which can vary geographically (Briscoe, unpublished data; McGregor et al, 2020).

Preliminary tests of the model against data presented in Rübsamen et al, 1984 indicated reasonable agreement  

for both energy and water costs, as well as changes in core temperatures (Figure 2). 
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Figure 2. Predicted metabolic rate (W/kg), core temperature (°C) and evaporative heat loss (W/kg) of greater gliders at 
air temperatures of 0-40 °C. Lines represent our biophysical model predictions, red dots indicate observed data from 
Rübsamen et al. 1984.

Ambient hourly microclimate data were generated using a modified version of the micro_aust function in the 

NicheMapR package (Kearney & Porter, 2017) and the future climate data from CSIRO described previously. As no 

future predictions for daily wind data were available, we fitted splines to predicted monthly averages across all fifty 

years to impute daily values (i.e. cubic spline interpolation, see Wahba, 1990). We assumed gliders occupied habitats 

between 30-100% canopy cover, as they typically only occur in forests, and were exposed to wind because they  

forage near tree extremities that offer more preferable food quality (e.g. new foliage).

Greater gliders den in tree hollows during the day (Lindenmayer 2002), preferring large Eucalyptus species trees with 

diameters > 50cm (Smith et al, 2007). Temperatures within tree hollows are typically much more stable than ambient 

(Rowland et al, 2017) and so by using hollows in large trees gliders are likely to reduce thermoregulatory costs during 

weather extremes. To estimate the likely den temperatures in large, very buffered tree hollows we simulated hourly 

temperatures at a depth of 30cm into a shaded solid wood surface. We assumed a basic density of 580kg m-3 and 

moisture content of 120%, based on measurements of Mountain Ash (Eucalyptus reglans) trees in Victoria (Brown 

& Hillis, 1984). From this, we estimated a wood specific heat value of 3138 J kg-1 K-1 (Steinhagen, 1977), and thermal 

conductivity of 0.4017 W m−1 °C−1 (Wullschleger et al. 2011). This approach neglects the heat effect of a glider on its 

own environment, which may be substantial (Kearney et al. 2011, Griffiths et al. 2017), and also ignores the effect of  

air flow from outside the hollow. To account for this second issue, we also ran models assuming that den conditions  

were similar to those in deep (100%) shade with no solar radiation and low windspeed (1% of interpolated speed).

For each of 520 spatial locations in our study area (25 square kilometre grid-cell resolution), we ran eight simulations 

to determine the energy and water requirements of greater gliders for every hour in our 50-year simulation period. 

Six simulations placed the glider outside of the den in 30%, 70% and 100% shade with interpolated wind velocities and 

either active foraging (metabolic rate of 7.08 W/kg) or inactive foraging (metabolic rate of 2.81 W/kg). The remaining 

two simulations assumed resting activities for the gliders; one in a tree hollow (with temperature influenced by the 

thermal properties of wood) and the other in a protected environment that tracked shaded ambient conditions.  

Both resting simulations assumed a metabolic rate of 2.81 W/kg, however, only the resting in a protected environment 

assumed low wind (i.e. free convection only, 1% of interpolated speed). All metabolic parameters were based  

on previous work done on greater gliders (Table 1).
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Table 1: Energy costs as estimated by Foley et al. 1990

Cost kJ/kg/day Cost (W/kg) Activity (hours per day) Original Source

205 2.37 Basal (24) Foley, 1987

38 0.44 Digestion (24) Rübsamen et al, 1984 & Foley, 1987

118 4.10 Feeding/grooming (8) Hume, 1984 & Foley, 1987

5-10 0.17 Movement (8) Robbins 1983

For each hour throughout the 50-year simulation period, we used selection rules to determine the most cost-effective 

action for a glider; for daytime it was the minimum energy cost from one of the two denning simulations, and for 

night-time it was the minimum energy cost from one of the six non-denning simulations, or from one of the denning 

simulations if the minimum energy costs exceeded a threshold indicated by a “panting” parameter in the model.  

We assumed that active gliders had increased minimum metabolic requirements (Table 1) but allowed heat from  

activity to pay additional thermoregulatory costs of keeping warm.

From the hourly estimates, we aggregated total daily energy and water costs based on two periods of time that the 

gliders were outside of the den; all night between dusk and dawn (7-11 hours of activity, see Lindenmayer et al, 2002) 

and a fixed period of four hours (suggested by empirical observations in Henry, 1985). The four final daily energy 

budget scenarios used in our analysis were:

•	 Scenario E1: Foraging when dark (zero solar radiation) and in shade (minimum exposure to open night sky) to 

minimise energy costs; active all hours of night; denning during day and, when breathing multiplier is maximum 

(panting), in a location that minimises energy costs; food intake based on active hours.

•	 Scenario E2: As for E1 but active only 4 hours of night.

•	 Scenario W1: As for E1 but minimising water rather than energy costs.

•	 Scenario W2: As for W1 but active only 4 hours of night.

For each scenario, we calculated daily energy and water gains based on time foraging.  We based these calculations 

on empirical data detailing nutritional qualities of Eucalyptus leaves and physiological characteristics of gliders  

(e.g. digestive efficiencies). To determine daily energy/water balances, we then subtracted costs from gains.  

Positive values indicated surplus energy/water and negative values indicated deficits.

To determine the potential for gliders to reproduce in a year, we summed the daily energy and the daily water balances 

in the respective year, and used the minimum of the two to determine how many grams of baby glider could be 

produced (Kearney et al, 2010). Because gliders are known to only have one young per year and the calculated values 

are only meaningful as a relative measure, we rescaled the values across all years to be one at the maximum value of 

all simulations and all other values to be a proportion of the maximum (e.g. if 300g was the maximum and rescaled 

to 1.0, 200g would be rescaled to 0.67). To calculate survival for each year, we counted the total number of days 

exhibiting energy surpluses and water surpluses and selected the minimum of the two – this was then divided into  

365 to represent the proportion of days that the animal met its energy requirements. We transferred survival and 

fecundity values to their respective locations in our study area for each simulation year and produced eight total  

stacks of rasters (gridded data), each with 50 layers (Figure 3).
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Figure 3: Example of spatially-explicit multipliers on fecundity (panel a), and survival (panel b), in the first year (2019)  
for all four scenarios; E1: foraging all hours with energy limiting activity (Energy_All_Hours), E2: foraging only four 
hours with energy limiting activity (Energy_4_Hours), W1: foraging all hours with water limiting activity (Water_All_
Hours), and W2: foraging only four hours with water limiting activity (Water_4_Hours).

Population dynamics
We simulated population dynamics using open-source spatially-explicit population simulation software (steps – Visintin 

et al, 2020). Our simulations were based on a model framework that included the outputs of correlative SDM (habitat 

suitability), LANDIS-II (forest dynamics) models, and NicheMapR (biophysical) models described previously (Figure 4).

Figure 4: The simulation framework is comprised of; a habitat suitability (correlative species distribution) model, the 
LANDIS-II forest dynamics model, and the NicheMapR biophysical model. Climate projections from the National 

Environmental Science Program Earth Systems and Climate Change Hub were inputted into all the models.
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For our initial parameters, we assumed three life stages (newborn, juvenile, adult) in an age-based transition matrix 

(adapted from Possingham et al, 1994) where the probability of survival for newborns was 0.5, for juveniles was 

0.85, and for adults was 0.9. Only adults reproduced at a rate of 0.5 gliders per adult. We modelled only females 

and assumed a pre-breeding census - our intrinsic rate of population change (lambda) was 1.08, indicating natural 

population growth. These baseline values were adjusted throughout the simulation based on outputs from the 

biophysical model.

Initial populations were generated using stable age distributions and totalled approximately 5,000 greater gliders across 

the study area. In randomly selected cells, glider abundances were assigned using a logistic function that related 

the number of individuals to habitat suitability – cells with higher suitability received more initial individuals up to the 

maximum carrying capacity of 60 individuals. This corresponded to 0.6 individuals per hectare which is the mid-range 

of previous estimates in similar habitats (Henry, 1985; McCarthy et al, 2001b; Jones et al, 2009). Initial populations  

were proportionally allocated across the three life-stages based on stable age distributions: newborns (~27%),  

juveniles (~13%), and adults (~60%).

Carrying capacity in each cell was controlled by a logistic function – as habitat suitability changed in space and time, 

the population limit changed accordingly. The functional shape was symmetric meaning that at habitat suitability  

values of 0.5, 30 individuals could be sustained in a population (50% of the maximum carrying capacity).

All juveniles in a population dispersed in the landscape and no other life stages were allowed to move between 

populations. We used individual-based cellular automaton movements based on random walks up to three cells  

(3 km). The movements were influenced by habitat suitability and carrying capacity – individuals were more likely  

to move into higher quality habitat with available carrying capacity.

Density dependence was represented in all simulations by reducing survival and fecundity in populations that 

approached carrying capacity – newborns were omitted from calculations of total cell populations. We also included 

demographic stochasticity (affecting small populations) and two levels environmental stochasticity (affecting survival 

and fecundity) in all of our models.

Disturbances in the landscape affected population abundance. Populations were reduced in each cell where fires 

occurred, with the magnitude of change varying with fire severity. Intense fires killed all individuals in a cell and lower-

intensity fires reduced the populations by approximately 15%, with linear scaling between the maximum and minimum 

intensities. To approximate hollow recruitment – an important resource for gliders - populations were also modified 

by “time since logging” which varied between zero and 190 years and a threshold function was used to determine its 

effect on abundance. Time since logging values equal to or less than 100 years were set to zero carrying capacity; 

values above 100 were linearly scaled by dividing by 50 and subtracting 2; and values above 150 years were set to one 

indicating that the maximum carrying capacity specified by the SDM was not reduced due to the age of the forest, 

hence abundance was only modified in areas subject to logging within the last 150 years.

We ran fifty replicates of a baseline 50-year steps simulation without any modifications to survival and fecundity  

(i.e. ignoring the outputs of our biophysical model). We then ran four additional simulations of fifty replicates each for 

our biophysical model output scenarios – E1, E2, W1, and W2. To test our models’ sensitivity to uncertainty, each set 

of five simulations were run using both low (0.02) and high (0.2) values of environmental stochasticity – the standard 

deviation on truncated random normal distributions around the values of the transition matrix (means).
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Results
From our biophysical model, the predicted survival and fecundity multipliers ranged between 0.67 and 1 (Table 2). 

Fecundity was generally more impacted than survival due to biophysical stress across all four scenarios and all years. 

The spatial variation between the values was low within each scenario and year. All scenarios indicated seasonal, but 

generally decreasing trends across all years. Based on predictions from the biophysical models, the first year was 

predicted to be the best, whilst year 34 was predicted to be the worst. This suggested a possible range restriction  

to the south and to the east (Figure 5).

Table 2: Predicted multipliers on survival and fecundity from the four biophysical model scenarios.

Scenario

Minimum 

Fecundity 

Multiplier

Maximum Fecundity 

Multiplier

Minimum Survival 

Multiplier

Maximum 

Survival 

Multiplier

E1 0.600 1.0 0.868 1.0

E2 0.687 1.0 0.923 1.0

W1 0.624 1.0 0.877 1.0

W2 0.686 1.0 0.926 1.0

Figure 5: Spatially-explicit multipliers on fecundity (top), and survival (bottom), in the best (first) year and worse (thirty-
fourth) year for the E1: foraging all hours with energy limiting activity scenario predicted by the biophysical model.
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Our low stochasticity baseline simulation indicated a decreasing population trend with an initially strong decline and 

then gradual downward trend (Figure 6a). The mean population estimate in year 50 was approximately 1,060 gliders 

but the estimated expected minimum population across all simulation replicates was approximately 950 gliders, or 

20% of the total initial population. The high stochasticity simulations indicated similar trends to the low stochasticity 

simulations but with more variation throughout years and lower expected minimum populations - approximately 540 

gliders in year 50 and an expected minimum population of approximately 170 gliders throughout (Figure 6b).

Figure 6: Simulated population trend over 50-year time period for the baseline scenario (i.e. excluding biophysical model 
outputs) for low (panel a) and high (panel b) environmental stochasticity. Gray lines represent each simulation replicate, 
the bold line indicates the mean population trajectory, and the dotted line indicates the expected minimum population 
(see McCarthy and Thompson, 2001a) of the simulation. The red line indicates the calculated carrying capacity from the 
correlative SDM predictions – i.e. maximum number of individuals (60) multiplied by the habitat suitability in each grid 
cell, summed across the landscape for each year). Note, simulated trends were similar for all scenarios with and without 
biophysical model outputs.

All of our simulations that included modifications to survival and fecundity based on outputs from the biophysical 

models also indicated declining populations but the expected minimum populations were consistently lower (Figure 7a 

& 7b). The additional uncertainty produced more overlap in the spreads of expected minimum populations (Figure 7b). 

The baseline simulation exhibited the most uncertainty in each level of stochasticity, followed by the energy limiting, 

four hours foraging scenario (E2).
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Figure 7: Expected minimum populations for low (panel a) and high (panel b) stochasticity simulated scenarios, with and 
without deterministic modifications to vital rates based on outputs from the biophysical models. The black dots represent 
expected minimum abundance across all 50 simulation replicates (each represented as a grey dot). The scenarios that 
include biophysical information are: E1: foraging all hours with energy limiting activity, E2: foraging only four hours with 
energy limiting activity, W1: foraging all hours with water limiting activity, and W2: foraging only four hours with water 

limiting activity.

The populations distributed themselves similarly between all of the scenarios in both the low and high environmental 

stochasticity variants (see Appendix). Summing the incidents that cells were occupied by populations in each timestep 

and replicate suggested important areas for conservation – the largest occurring in the southwestern portion of the 

study area (Figures 8-12).

Figure 8: Spatial population distribution over the 50-year time period for the baseline scenario (i.e. excluding biophysical 
model outputs) for low (panel a) and high (panel b) levels of  environmental stochasticity. Cell values represent the sums 
of instances where a cell has been occupied by a population over the entire simulation - rescaled to be between zero 
and one.
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Figure 9: Spatial population distribution over the 50-year time period for the E1 scenario (including biophysical model 
outputs) for low (panel a) and high (panel b) levels of  environmental stochasticity. Cell values represent the sums of 
instances where a cell has been occupied by a population over the entire simulation - rescaled to be between zero  
and one.

Figure 10: Spatial population distribution over the 50-year time period for the E2 scenario (including biophysical model 
outputs) for low (panel a) and high (panel b) levels of  environmental stochasticity. Cell values represent the sums of 
instances where a cell has been occupied by a population over the entire simulation - rescaled to be between zero  
and one.
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Figure 11: Spatial population distribution over the 50-year time period for the W1 scenario (including biophysical model 
outputs) for low (panel a) and high (panel b) levels of  environmental stochasticity. Cell values represent the sums of 
instances where a cell has been occupied by a population over the entire simulation - rescaled to be between zero  
and one.

Figure 12: Spatial population distribution over the 50-year time period for the W2 scenario (including biophysical model 
outputs) for low (panel a) and high (panel b) levels of  environmental stochasticity. Cell values represent the sums of 
instances where a cell has been occupied by a population over the entire simulation - rescaled to be between zero  
and one.
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Discussion
Our study demonstrates a useful framework for incorporating projected vital rate changes into spatially-explicit 

population simulations. In contrast to correlative methods, our framework considers causal processes explicitly in 

the modelling. We found that incorporation of the biophysical impacts on survival and fecundity had a strong impact 

on the population outcomes for the greater glider with a reduction of approximately 25-50% in expected minimum 

abundance across the simulations including biophysical impacts (Figure 6). This is important for management as 

implicitly assuming that biophysical processes are adequately captured in modelling may provide false confidence in 

expected minimum populations – which could in actuality be considerably lower and below a threshold that wildlife 

managers deem to be acceptable.

Bringing population dynamics and biophysical constraints into our models had a substantial influence on projected 

outcomes for the greater glider. While carrying capacity based on land use, landscape (forest cover and age) and 

climate change showed a gradual decline over the simulation period, population size dropped much more dramatically 

through the latter half of the simulation period due to dispersal limitations and metabolic constraints (Figure 6). These 

impacts may not be captured in an analysis based solely on correlative SDMs and would certainly be more difficult to 

identify. It should be noted, however, that our SDM predictions took into account dynamically varying climate variables 

– also used as a basis for the biophysical model predictions. It may be argued that this method makes it difficult to 

disentangle carrying capacity from weather conditions given that carrying capacity is driven by our habitat suitability 

in the population simulations. Carrying capacity could actually be driven by the number of hollows and be a function 

of the static variables (non-climate) only. One method to test this assumption would be to repeat the SDM analysis 

excluding the dynamic climate variables – or using long-term climate not allowed to vary through time. This was 

excluded from our analysis, however, future work would benefit by adding this scope.

Our baseline population simulation resulted in a decreasing trend, which is commensurate with patterns suggested in 

other habitat modelling and surveys in the region (Lumsden et al, 2013; Lindenmayer et al, 2013; Berry et al, 2015; Wagner 

et al, 2020). However, other areas in Victoria have indicated insignificant or inconclusive changes in estimated populations 

(Nelson et al, 2018) signalling that our analysis may be usefully applied to these areas in an attempt to discover patterns 

that inform wider conservation efforts. Further, simulating historic population trends in other areas with good comparative 

survey data would help to calibrate parameter selection, but this was not included in the scope of this work.

The peaks and troughs shown in the carrying capacity (Figure 6) were most likely due to the forest dynamics modelled 

in the landscape model (i.e. LANDIS-II) that underpins the habitat suitability model (see Figure 4). As the model 

considered both disturbances (e.g. logging and fires) and regeneration (e.g. growth) in the landscape, we expect 

variation in the landscape quality and thus the number of individuals that can be supported in the landscape at each 

annual timestep. The population trends did not reflect these patterns because there was limited dispersal given our 

configuration of initial populations, simulation resolution, and species characteristics. Our initial populations were 

quite dispersed across the landscape (although more concentrated in areas of more suitable habitat), and given both 

the sedentary nature of gliders and our coarse grid cell resolution, did not move very far. The total carrying capacity 

calculations were determined across all cells regardless of containing populations of gliders. Plotting the total carrying 

capacity of all populated cells against the total populations across the landscape for each timestep would show  

a more consistent pattern.

As anticipated, including high stochasticity in model projections made little difference to mean expectations of 

future population size, but did dramatically increase the risk of falling to dangerously low levels. Our stochasticity 

parameterisation is based on plausible variation in parameter values under changing environments, and so provide a 

realistic characterisation of future risks that should be incorporated in land management and conservation decision 

making. The inflation of risks of extremely low population sizes or even local extinction under high stochasticity is  

well documented (McCarthy and Thompson 2001a) but is crucial to consider when avoiding extinction is demanded  

by society and risk-weighted decisions must be taken.  
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Although the differences between energy or water-limiting scenarios were negligible, both survival and fecundity were 

consistently lower in scenarios that simulated glider activity for the full duration of night. This suggests that food intake 

may not be adequate to support extended glider activities and that longer periods of denning are more advantageous 

(especially for predator avoidance). This is supported by other behavioural observations of greater gliders in this part 

of its range (Henry, 1985) which noted a consistent length of activity regardless of season. Observations of gliders in 

the other parts of its range suggest similarly consistent lengths of activity but over longer average night-time periods 

(Norton, 1988) - probably due to more conducive thermal conditions. This highlights the importance of choosing 

an appropriate set of input parameters that are based on empirical observations or controlled experiments that are 

representative of the local climatic conditions for which a biophysical model is being prepared.

Several other climate models exist and our choice of MIROC5 was based on early discussions with climate scientists, 

who considered this model to be the most appropriate for our study region. We did examine the outputs of three 

other climate models (RCP 8.5) and observed very similar overall predicted climate trends. Although comparing 

different representative concentration pathways was outside the scope of this study, our choice of “worst case” was 

notably conservative given the status of the target species. A key point is that our framework can easily accommodate 

predictions from any climate model making it applicable to many different spatial and temporal extents where  

data is available. 

Converting biophysical model outputs into estimates of vital rate changes requires assumptions which are often 

context dependent and data driven. Although known information on the greater glider and associated food sources 

allowed us to prudently calculate grams of baby glider that would be produced given energy budgets, converting  

these estimates into expected impacts on fecundity is not trivial. We assumed that fecundity changed linearly with  

a reduction in the biophysical model predictions of energy available to reproduction, but alternative assumptions  

could be justified with experimental evidence.

Biophysical models have been around for several decades and their use has been primarily associated with 

understanding the behaviour and physiology of individual organisms (e.g. Porter et al, 1973). However, the use of 

biophysical modelling in conservation has only made slow progress over the past decade, likely driven by data and 

computational requirements. Our biophysical simulations ran for approximately 40 hours in a high-performance server 

environment. The fine-scale temporal resolution (hourly), reasonably long timespan (50 years), moderately large spatial 

extent (520 locations), and several variations (8 scenarios) resulted in nearly four billion data points that had to be 

stored for subsequent processing. The final estimates for daily energy and water use comprised approximately forty 

million records in a database. Nevertheless, with increasing advances in computational technology, we envision  

that this analysis will soon be run overnight on a standard laptop.

Our simulations were based on regular grids that spatially organised our input data and set the operational framework 

for a steps simulation. Because our framework used several different models and sources of input data, we were 

limited on the choice of modelling resolution. Grid cell size does, in fact, have an influence on population outcomes 

in a spatially-explicit simulation – especially when effects of demographic stochasticity (e.g. Allee effects) are included. 

This is because species attributes such as range size and activity patterns, and density dependence mechanisms, 

are explicitly represented in the modelling. We could have chosen a cell size that was closer to the observed 1.5 ha 

(~125m x ~125m grid cell) mean home range of Greater Gliders (Norton, 1988) but this would have amplified the effect 

of demographic stochasticity (the random fates of individuals) by only allowing a maximum of two animals in each 

grid cell. However, despite our larger cell sizes, the populations showed some initial decreases due to demographic 

stochasticity. Given a reasonably small area, analysts may opt to run several comparative simulations at different  

cell (i.e. patch) sizes.
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Management implications
Estimating the effects of microclimates on an organism’s vital rates through biophysical processes adds another 

dimension of information that may be used to help understand and predict outcomes of environmental change 

for species of conservation concern – and, as far as we are aware, combining these modelling methods, as in our 

framework, is a novel practice. Biophysical effects are often implied, assumed, or completely ignored in simulations; 

but variations in magnitudes of such impacts can be important for threatened species. For example, they may help 

in the prioritisation of targeted gene flow (Kelly and Phillips, 2016), especially where populations have known local 

adaptations to climate (e.g. pelt depth in the case of arboreal folivores, see Briscoe et al, 2014). Our study showed 

significant potential implications of climate and land use change mediated through population and biophysical 

processes, not necessarily captured in correlative analyses. This indicates that where possible, models used to  

support analysis of climate impacts and land use change should incorporate, or a least explicitly consider,  

population dynamics and biophysical processes.

Further, our framework may be used to identify at-risk areas that should be targeted for management actions. 

Due to its spatially-explicit nature, the framework is able to produce visual maps that indicate areas that may lose 

populations at greater rates. Simulating changes over time for many instances - each subject to environmental variation 

(or uncertainty) - creates more robust estimates and can help to discriminate between areas that support stable 

populations and those that are prone to extinctions.

The impacts of disturbances can be tested in the framework by changing parameters in the LANDIS-II model or 

the correlative SDM model, redefining the relationships between carrying capacity and habitat features used in the 

simulations, explicitly modifying the habitat suitability during the simulations, or a combination of all three. For example, 

in the model set up we have used for this work, we specified a timber harvesting scenario based on current state policy 

and standards set by VicForests. Model specifications can be changed, and new simulations run, to test different policy 

settings (or harvesting methods) to determine the impacts on species persistence. This type of analysis was completed 

for several species in Victoria as part of the Regional Forest Agreements review; a report detailing the methods is  

being finalised for the Victorian Department of Environment, Land, Water and Planning and should be released soon.

The choice of how “time since logging” values were applied to carrying capacity was a surrogate for tree hollow 

formation and thus habitat suitability. Any LANDIS-II model simulated logging in a cell triggered a recorded event that 

was used to determine the “time since logging” and assumed to not leave any large, potentially hollow-bearing trees 

that would be older than the recorded time. This method may be considered conservative, however, gliders have 

not been observed to persist in highly-fragmented remnants of forest and are highly sensitive to logging activities. 

Because the LANDIS-II model simulations output age and biomass information based on species, more sophisticated 

relationships between the projected forest characteristics and the carrying capacity can be defined. For example, 

carrying capacity could be affected by the dominant age class remaining in a cell rather than the time since logging. 

Unfortunately, computational power and data limitations preclude LANDIS-II simulations to be detailed enough to 

characterise individual trees in a forest landscape. Perhaps future advances will make this possible. 

The density/abundance of hollow-bearing trees was inferred from the LANDIS-II modelling which provides spatially- 

and temporally-explicit age class distributions as outputs. It was assumed that cells with older trees above an age 

threshold would contain hollows and that the quality/density of hollows would be proportional to the forest age.  

These outputs were used as inputs to the correlative SDM to model the relative suitability of habitat across the 

landscape and therefore indirectly considered in the population simulations. More direct methods could employ  

survey information or estimations of hollow abundance (i.e. modelling) to affect the carrying capacity or the 

populations within STEPS simulations. For example, an analyst could use a comparison of estimated hollow  

density to population density to directly moderate the vital rates during a simulation.
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Determining minimum patch sizes for viable populations is possible, but difficult, given the mechanics of the simulation 

framework. STEPS modelling requires an analyst to chose a grid cell size which will serve as the basis for discrete 

populations in space and time. As mentioned previously, the choice of this cell size has implications for some of the 

internal quantitative operations (e.g. demographic stochasticity). By specifying clusters of cells with suitable habitat 

surrounded by missing values in a spatial grid, a more classic patch-based metapopulation analysis can be emulated 

and would form the basis for investigating patch size effects on populations. It is recommended that a simulation is  

first specified from plausible parameter choices and generates a plausible population trend. Once this baseline 

simulation is established, an analyst may investigate changing the size of the patches by setting cells to missing  

values in the habitat suitability spatial layer and running additional simulations. 

Our framework can be used to explore the effects of changes in landscape connectivity. STEPS features a cellular 

automata dispersal engine that considers individual-based movements and accounts for landscape permeability.  

This means it is possible to include spatial information that identifies barriers in a landscape and specify how much 

they will impede or support the movements of species. Further, the spatial information can be temporally-explicit 

and identify changes that occur at different intensities throughout a simulation timespan. For example, an analyst 

may specify that habitat that degrades below a suitability threshold (e.g. due to climate change) no longer permits 

movement and this would affect the ability of species to colonise new areas. By changing the information that defines 

the landscape permeability, analysts are able to target areas to improve connectivity and assess changes in projected 

population persistence. In a similar way, the framework may also be used to assess the effectiveness of strategies  

to stop undesirable movements (e.g. feral species).

Terminology used
Fundamental/environmental/ecological niche - any environmental state that would allow a species to persist indefinitely.

Life stages - identified functional stages of development for a species (e.g. juvenile, subadult, adult).

Parameters - configuration variables that can either be estimated by a model given a specific set of data or specified  

to control the behaviour of a simulation.

Sensitivity analysis - a technique used to understand how relative magnitudes of changes in model parameters  

change the performance or outputs of mathematical models.

Stochasticity – randomness or noise that is known to occur in nature and is explicitly incorporated into modelling 

using values drawn from statistical distributions and sets of random numbers.

Vital rates - a measurement of how fast vital statistics (births, deaths, growth rates) change for a species  

within demographic categories (age or sex). 
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Appendix

Figure A1: Spatially-explicit population distributions in select years (decades) based on the baseline scenario with low 
environmental stochasticity.

Figure A2: Spatially-explicit population distributions in select years (decades) based on the E1 scenario with low 
environmental stochasticity. 
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Figure A3: Spatially-explicit population distributions in select years (decades) based on the E2 scenario with low 
environmental stochasticity.

Figure A4: Spatially-explicit population distributions in select years (decades) based on the W1 scenario with low 
environmental stochasticity.
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Figure A5: Spatially-explicit population distributions in select years (decades) based on the W2 scenario with low 
environmental stochasticity.

 

Figure A6: Spatially-explicit population distributions in select years (decades) based on the baseline scenario with high 
environmental stochasticity.
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Figure A7: Spatially-explicit population distributions in select years (decades) based on the E1 scenario with high 
environmental stochasticity. 

 

Figure A8: Spatially-explicit population distributions in select years (decades) based on the E2 scenario with high 
environmental stochasticity.
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Figure A9: Spatially-explicit population distributions in select years (decades) based on the W1 scenario with high 
environmental stochasticity.

   

Figure A10: Spatially-explicit population distributions in select years (decades) based on the W2 scenario with high 
environmental stochasticity.
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