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Abstract 

Context. Artificial refuges (cover boards) are a popular method to survey and monitor herpetofauna 

worldwide. However, one limitation of using artificial refuges in terrestrial environments is the low 

detection rates of arboreal species. Furthermore, destructive search techniques can damage critical 

microhabitat such as exfoliating rock or flaking bark of mature trees. 

Aim. We tested a non-destructive, passive method of sampling arboreal reptiles in fragmented 

agricultural landscapes in south-eastern Australia. 

Methods. We installed 84 artificial bark refuges consisting of strips of non-toxic, closed-cell foam 

attached to eucalypt trees in thirteen patches of remnant vegetation. We used Bayesian statistics to 

compare differences in detection rates between artificial bark refuges, terrestrial artificial refuges and 

active searches of natural habitat over a four year period.  
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Key results. Active searches combined with terrestrial artificial refuges detected the most number of 

reptile species, including several cryptic fossorial species. Artificial bark refuges detected on average 

132 times more individuals of the arboreal southern marbled gecko Christinus marmoratus than 

terrestrial refuges. Gecko abundance patterns were related to tree characteristics such as tree size, bark 

thickness and stand basal area, as well as survey year. 

Conclusions. Traditional survey methods such as terrestrial cover boards in combination with active 

searches of natural habitat may significantly underestimate counts for arboreal gecko species.  

Implications. Artificial bark refuges provide a cost-effective, non-destructive and durable method for 

surveying and monitoring arboreal reptiles in woodland environments over short to medium time 

frames. Foil-backed, closed-cell foam has broad application for use in spatial capture-recapture 

studies and long-term monitoring of arboreal reptiles. This method also may be effective for procuring 

records of threatened arboreal geckos or as a solution for providing temporary habitat in ecological 

restoration projects. 

Additional keywords: arboreal reptiles, artificial cover boards, environmental impact assessments, 

habitat restoration, survey method 

 

Introduction 

Effective wildlife management requires a detailed understanding of species distributions and habitat 

preferences (Adams 2016; Fryxell et al. 2014). Paramount in achieving this goal is choosing survey 

techniques that provide reliable estimates of abundance and diversity (Garden et al. 2007; Ribeiro-

Júnior et al. 2008). Survey methods also must have the ability to detect and monitor changes in 

population trends over time (Lindenmayer et al. 2012a) and produce standardised and repeatable 

empirical data that can be compared across sampling events (Cunningham 2016; Engeman 2005). 

Survey techniques that fail to adequately detect rare and cryptic species, or particular taxonomic 

groups and lifeforms, may lead to incomplete inventories, inappropriate management actions and sub-

optimal conservation outcomes (Thompson 2013).  
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The use of artificial refuges (cover boards) to detect reptiles and amphibians is now a well-established 

method for surveying and monitoring particular taxonomic groups, especially terrestrial snakes, 

lizards and amphibians (Hampton 2007; Michael et al. 2012; Sutherland et al. 2016; Willson and 

Gibbons 2010). A wide range of manufactured materials have been used to survey herpetofauna, 

including fibrocement slabs to monitor tortoises (Ballouard et al. 2013), timber boards and cedar 

shingles to survey salamanders in Europe, and Asia (Hesed 2012; Monti et al. 2000; Willson and 

Gibbons 2010), Onduline (bitumen) sheets to survey geckos in New Zealand (Thierry et al. 2009), 

and corrugated tin to survey snakes in the United States of America (Grant et al. 1992; Halliday and 

Blouin-Demers 2015; Hampton 2007; Joppa et al. 2009). In Australia, timber fence posts have been 

used to survey grassland reptiles (Michael et al. 2004), concrete and terracotta roofing tiles have been 

used to survey legless lizards (Howland et al. 2016; Thompson 2006), and recycled railway sleepers 

have been used to survey small, nocturnal elapid snakes (Michael et al. 2012).  

 

The use of artificial refuges is not without limitations. Artificial refuges placed in terrestrial 

environments will inherently be biased towards sampling ground-dwelling fauna, and factors such as 

time of day and weather variables can significantly influence detection rates (Joppa et al. 2009; 

Thierry et al. 2009). However, several studies have detected arboreal lizards using terrestrial refuges 

(Michael et al. 2012). In south-eastern Australia, arboreal lizard species also use habitats other than 

trees, particularly rocky outcrops, fallen timber and buildings (Michael et al. 2015). Species such as 

the ragged snake-eyed skink Cryptoblepharus pannosus and the southern marbled gecko Christinus 

marmoratus have been detected on the ground beneath timber posts deployed as a survey method in 

woodland ecosystems (Michael et al. 2004), or beneath sheets of corrugated tin which imitate natural 

bark habitat (Michael et al. 2012). However, using terrestrial refuges to detect arboreal species is 

likely to result in low detection rates and incomplete inventories. The use of arboreal refuges is 

therefore likely to improve arboreal species detection rates. Although this method has primarily been 

applied in studies of invertebrates (Bowie et al. 2006; Hodge et al. 2007), two studies have targeted 

reptiles. In New Zealand, the use of arboreal covers led to the detection of more cryptic arboreal forest 
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geckoes than nocturnal spotlighting, terrestrial artificial refuges or trapping (Bell 2009). In the tropical 

savanna woodlands of northern Australia, arboreal covers were used to compare differences in capture 

success between visual encounter surveys (Nordberg and Schwarzkopf 2015). However, lizard 

detections beneath arboreal covers have not been compared to traditional survey methods such as 

active searches or other forms of artificial refuges. Furthermore, the use of arboreal covers may 

reduce the need to remove or damage critical habitat such as exfoliating or flaking bark of mature 

trees. This is an important consideration when undertaking long-term ecological monitoring in areas 

that support threatened arboreal reptile species or threatened vegetation communities, given that once 

bark habitat is removed or damaged, it is not readily replaced and may take decades to accumulate. 

Damage to bark may also introduce a survey artefact with diminishing searchable habitat available 

with time since monitoring, which may be an important consideration when evaluating restoration 

outcomes. 

 

To examine the effectiveness of using arboreal covers to survey and monitor temperate zone reptiles, 

we compared detections of arboreal reptiles between artificial bark refuges, active searches and 

terrestrial artificial refuges (timber railway sleepers, terracotta roofing tiles and corrugated steel) over 

a four year period. We addressed three questions: 1) How effective are different survey methods for 

detecting arboreal species? 2) Are there temporal differences in species detection rates over time? 3) 

Do tree characteristics (e.g. tree species, trees size class, bark thickness and stand basal area) 

influence arboreal lizard detection rates?  

 

Materials and methods 

Study area 

We conducted this study within the Cowra-Young-Boorowa district of the South-west Slopes 

bioregion of New South Wales (central coordinate: 34°06'30.9"S 148°36'59.6"E). The predominant 

form of native vegetation in the bioregion is temperate eucalypt woodland (Hobbs and Yates 2000; 
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Lindenmayer et al. 2016). Sites were located on pre-existing long-term monitoring sites on private 

land within the critically endangered Box Gum Grassy Woodland ecosystem. Sites were located in 

patches of remnant vegetation where livestock grazing is the dominant land use. The native overstorey 

species were dominated by white box (Eucalyptus albens), yellow box (E. melliodora) and Blakely’s 

red gum (E. blakelyi) (Keith and Wales 2004).  

 

Terrestrial and arboreal artificial refuges 

In 2010, we established 268 reptile monitoring plots (1 ha = 50 m x 200 m search grids) across the 

critically endangered White Box-Yellow Box-Blakely’s Red Gum Woodland and Derived Native 

Grassland ecological vegetation community in south-eastern Australia (Lindenmayer et al. 2012b). 

Within each permanently marked monitoring plot, we installed two arrays of terrestrial artificial 

refuges (Figure 1). These consisted of four timber railway sleepers (1.2 m in length), four terracotta 

roof tiles, and one double stack of 1 m² corrugated steel sheet (Michael et al. 2012). Each array was 

placed 100 m apart along the centre of the monitoring plot. During 20th - 24th May 2013, we selected 

thirteen sites from a subset of pre-existing monitoring sites located within the Lachlan-Murrumbidgee 

catchment where arboreal lizard species (e.g. southern marbled gecko Christinus marmoratus) had 

been previously detected through either active searches or artificial terrestrial refuges (Kay et al. 

2013). We then installed arboreal artificial bark refuges (N = 84 bark refuges) in a 1 ha area adjacent 

to our existing monitoring sites. The bark refuges consisted of a non-toxic, foil-backed strip of closed-

cell foam (NSL 4005 5 mm, 1000 mm wide x 50 m roll, manufactured by PJ Bowers Pty Ltd, 

Queensland). We cut the material into 500 mm wide strips and covered the entire circumference of 

selected tree trunks, restraining the covers with rope attached to shock cords and metal ‘S’ clips 

(Figure 1). Each bark refuge was installed at a height of 1.3 metres above the ground (for logistical 

reasons). This attachment method allowed for quick removal from the tree to facilitate searching 

underneath. The foil faced outwards to provide weather resistance and thermal insulation. At each 

site, six trees were selected (mean distance between selected trees = 24.8 m), representing the two 

dominant overstory species (E. blakelyi and E. melliodora) and three size classes measured at breast 
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height (small: 10 – 30 cm, mean = 26.18 cm; medium: 31 – 60 cm, mean = 46.56 cm; > 60 cm, mean 

= 77.81 cm). The bark refuges were positioned on trees 100 m from our terrestrial monitoring plots to 

reduce confounding effects between artificial refuge methods. Arboreal and terrestrial refuges 

remained in situ throughout the entire study. The total cost of all artificial bark materials (foam, rope, 

shock cord and clips) ranged from $5.8 to $13.75 AUD/tree, depending on tree circumference 

(approximately $6 AUD/m). We conducted the first survey in spring, four months after the artificial 

bark refuges were installed, and in conjunction with active searches and inspections of terrestrial 

artificial refuges.  

 

Survey protocols 

We collected count data (abundance) on lizards from thirteen sites using three different survey 

techniques, time-constrained (20 min) active searches of natural habitat (including lifting bark of 

trees, logs and rocks, and conducting visual surveys of tree trunks and logs), terrestrial artificial 

refuges and arboreal artificial refuges. The time required to inspect the two arrays of terrestrial 

refuges and the bark refuges was 10 minutes for each method. We conducted one survey each year 

between September and November 2013, 2014, 2015 and 2016, and compared detection rates among 

survey methods using these years for comparison. We did not individually mark lizards in this study. 

All surveys were conducted by the same group of ecologists on clear days between 0900 - 1400 hours.  

 

Statistical analysis  

Differences in lizard occurrence and abundance among the three survey methods were compared 

using logistic and Poisson (or negative binomial when over dispersion was present) regression 

respectively. We chose the negative binomial model over the Poisson model using leave-one-out 

cross-validation information criteria (LOOIC) (Gelman et al. 2014; Vehtari et al. 2015; Watanabe 

2010) which we described in more detail below. Over-dispersion was present when the negative 

binomial model had a lower LOOIC than the corresponding Poisson model. Data were collapsed to 
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the site level for this stage of the analysis and site was used as a random effect in the regression 

models to account for dependence among the survey methods and for multiple visits over years. The 

effect of survey method was assessed by comparing models with and without different survey 

methods. Differences in lizard occurrence beneath bark refuges over time were compared using 

presence absence data at the tree level for each year. Site was fitted as a random effect and year was 

modelled as a categorical variable. The effect of year on occurrence rates was assessed by comparing 

models with and without survey year. To evaluate tree characteristics effecting abundance we fitted 

tree species, size class, tree diameter (measured at breast height, log transformed), stand basal area 

(m²/ha, log transformed) and bark thickness (log transformed). We did not include size class and the 

other size variables in the same model, since size class was associated with other tree characteristics 

(e.g. tree diameter, stand basal area and bark thickness). Survey year was retained in all models as this 

was considered important for detections. Bayesian methods were employed in all analyses using the 

brms (Bayesian regression models using Stan) package (Buerkner 2016) in R (R Core Team (2015). 

Brms provides a convenient interface to Stan (Carpenter et al. 2017) for many commonly occurring 

generalized linear mixed models and also provides several extensions. Cauchy priors (location = 0, 

scale = 5/2) were assigned to all regression parameters and continuous variables were standardized 

prior to analysis (Gelman et al. 2008). Four Hamiltonian Markov Chains were run for 2000 iterations 

each and convergence was assessed by visual examination of the trace plots. In the interest of model 

parsimony, we chose the simplest model within two LOOIC units of the best fitting model (Gelman et 

al. 2014; Vehtari et al. 2015; Watanabe 2010).   

 

Results 

Summary statistics 

The closed-cell foam material remained viable throughout the four year deployment period suggesting 

this material is weather-resistant in field conditions. Damage caused by invertebrates and avifauna 

was evident on some foam pieces, but this did not seem to affect reptile use. Overall, we recorded 
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thirteen reptile species from five families. Four reptile species were detected beneath the bark refuges, 

eight species were detected beneath terrestrial refuges, and eleven reptile species were detected using 

actives searches (Table S1, available as supplementary material to this paper). Boulenger’s skink 

Morethia boulengeri accounted for 54% of all reptile observations and was detected most frequently 

beneath corrugated steel (123 observations) followed by active searches (65 observations). The 

southern marbled gecko Christinus marmoratus accounted for 33% of all observations and was most 

frequently recorded beneath artificial bark refuges (142 observations) compared to actives searches (7 

observations) and corrugated steel (1 observation). Given the low number of detections of most lizard 

species beneath artificial bark refuges, we restricted our analysis to C. marmoratus. 

 

What is the optimal survey method for detecting C. marmoratus? 

The model that allowed for differences in detection of C. marmoratus among the three survey 

methods was highly preferred (Δ LOOIC = 66.87) over the model that assumed a constant detection 

rate among survey methods. Negative binomial models fitted our abundance of C. marmoratus better 

than the Poisson models (lower LOOIC in all cases), and the model that allowed for differences in 

abundance among the three survey methods was preferred to the constant abundance model (Δ 

LOOIC = 88.14). Abundance estimates from artificial bark refuges were 20.5 times (95% credible 

interval 9.3, 52.4) and 132 times (29.3, 1695.5) higher than active search and terrestrial artificial 

refuges, respectively (Figure 2, Table S2, available as supplementary material to this paper). A similar 

difference between survey methods was observed for detection rates (Table S3, available as 

supplementary material to this paper). 

 

Temporal differences in detection rates 

The model that allowed for differences in detection rates of C. marmoratus among years was 

preferred to the constant detection rate model (LOOIC = 15.27). The lowest rate was observed in 

2013 (8.1% detection probability) and we found no evidence of differences in detection rates (range 
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26.2% - 31.4%) among subsequent survey years (2014-2016). (Table S4, available as supplementary 

material to this paper). 

 

Tree characteristics and bark refuge abundance  

We considered 18 models of varying degrees of complexity (see Table S5 for a complete listing 

available as supplementary material to this paper) to model the abundance per tree of C. marmoratus. 

The most parsimonious model showed the following effects: abundance per tree was positively 

associated with tree diameter (slope 1.06, 95% credible interval [0.77, 1.36]), bark thickness (0.28, 

[0.09, 0.48]) and basal area (0.23, [0.01, 0.47]) and survey year (Figure 3). Abundance per tree was 

lower in 2013 compared to 2014-2016, with no evidence of differences among 2014-2016 (Table S6, 

available as supplementary material to this paper). 

 

Discussion 

In many studies of herpetofauna, a combination of survey methods is required to procure 

comprehensive inventories (Garden et al. 2007; Michael et al. 2012). Effective survey methods also 

must have the ability to detect and monitor changes in population trends over time (Lindenmayer et 

al. 2012a) and produce standardised and repeatable empirical data that can be compared across 

sampling events (Cunningham 2016; Engeman 2005). In this study, we compared detection rates of 

reptiles over a four year period using three different survey methods. We specifically examined the 

effectiveness of using a novel survey method to detect arboreal reptiles in fragmented agricultural 

landscapes. 

 

We found active searches of natural habitat resulted in the greatest number of detections of reptile 

species. Two species (Anilios nigrescens and Lerista bougainvillii) were detected only beneath 

terrestrial refuges, three species (Aprasia parapulchella, Cryptoblepharus pannosus and Egernia 
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cunninghami) were detected only during active searches and only one individual E. striolata was 

detected beneath artificial bark refuges. These findings provide evidence to suggest that using both 

active searches and artificial refuges such as corrugated steel to survey reptiles in temperate eucalypt 

woodlands can procure complimentary species (Michael et al. 2012), especially cryptic fossorial 

species which are often difficult to detect in highly disturbed agricultural environments. Surprisingly, 

we detected very few C. pannosus beneath bark refuges even though this species was detected more 

frequently during actives searches (basking on trees) during the surveys. In a similar study, Nordberg 

and Schwarzkopf (2015) found that Cryptoblepharus sp. was one of the most commonly detected 

species beneath artificial bark refuges. Given the tendency for this species to prefer heavily timbered 

habitats with abundant amounts of fallen timber and dead trees (Cunningham et al. 2007; Michael et 

al. 2014), the widespread practice of cleaning up fallen and dead timber in agricultural landscapes 

may have reduced its abundance in the historically heavily grazed study area that was the focus of the 

investigation reported here.  

 

Optimal survey method for detecting C. marmoratus 

We found significantly more individuals of C. marmoratus beneath artificial bark refuges than any 

other survey method (Figure 1). The species was 132 times more abundant beneath bark refuges than 

beneath terrestrial refuges, and 20 times more abundant beneath bark refuges than on sites where 

active searches were used. This suggests that traditional methods such as terrestrial cover boards and 

active searches may underestimate the abundance of this species, although this may depend on region, 

habitat condition and the presence of rock habitat (Lettink 2007; Michael et al. 2012). Considering we 

installed only six bark refuges over 1 ha and, on average, more trees were inspected (by carefully 

lifting exfoliating bark) during active searches, the differences in detection rates between survey 

methods is even more compelling. Population estimates for C. marmoratus in rocky environments 

have been reported to be approximately 150 animals/ha (Kearney and Predavec 2000). However, in 

non-rocky environments, it is difficult to locate geckos sequestered beneath the bark of trees without 

causing substantial damage to their habitat. If we were to comprehensively search for sheltering 
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geckos by completely removing bark from all suitable trees, it is likely that active searches would 

produce higher detection rates, but this activity would at the same time reduce the quality of habitat 

for this and other arboreal species. Incorporating artificial bark refuges in future fauna surveys would 

not only negate the need to damage critical bark habitat but could significantly increase the 

probability of detecting arboreal species. This has important implications for the refinement of survey 

methods used to target threatened arboreal species in environmental impact assessments. 

 

Temporal differences in detection rates 

We found C. marmoratus occupied the artificial bark refuges relatively soon after they had been 

installed (8.1% detection probability at four months since installation). In the following year, 

detection rates beneath bark refuges had increased by a factor of four (31.4% detection probability), 

thereafter remaining stable. Over time, arboreal refuges may provide stable detection probabilities and 

reliable population estimates. Unlike terrestrial refuges (both natural and artificial), which are subject 

to considerable variability in temperature (Huey et al. 1989; Kearney 2002) and corresponding 

fluctuations in the occupancy patterns of cryptozoic species (Webb and Shine 1998; Thierry et al. 

2009), bark habitat may provide opportunities for geckos to thermoregulate during different seasons 

and hence, detectability issues associated with temperature are predicted to be reduced. We suggest 

bark refuges may provide thermally suitable microhabitats because they are wrapped around the entire 

circumference of the tree, allowing individuals to select a broad range of dial and seasonal thermal 

conditions. Christinus mamoratus is known to regulate its body temperature through positional and 

postural mechanisms, as well as through retreat site selection (Kearney and Predavec 2000). Artificial 

bark refuges may provide a range of thermally suitable microhabitats that may promote long-term 

occupation and site fidelity. Further research is required to examine the relationship between gecko 

occupancy patterns and the thermal conditions of artificial refuges compared to natural retreat sites.     

 

Tree characteristics and abundance patterns  
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Previous studies in the temperate eucalypt woodlands of south-eastern Australia have reported C. 

marmoratus to be an arboreal generalist (Michael et al. 2015), associated with old growth vegetation 

(Cunningham et al. 2007), large trees and high amounts of native vegetation in the landscape 

(Michael et al. 2017). In this study, we found the majority of C. marmoratus observations beneath 

bark refuges were from trees with an average diameter of 78 cm. We also found between 20 - 40% of 

C. marmoratus observations were on trees with an average diameter of 47 cm. The model which best 

explained C. marmoratus abundance patterns included tree diameter, bark thickness and stand basal 

area as important variables (Figure 2). These findings suggest that large diameter trees with thick bark 

located in timbered areas, regardless of tree species may be the best trees to target for artificial bark 

installation for future herpetofauna inventory and monitoring projects.   

 

Our findings also suggest that artificial bark refuges may have broad application in ecological 

restoration programs, especially in relation to increasing arboreal habitat in secondary vegetation 

communities (regrowth woodland) where stem density is high and tree size is small (Ikin et al. 2015). 

Bark refuges placed in areas that lack large trees with suitable bark habitat could facilitate greater 

dispersal and gene flow between lizard populations that occur in fragmented agricultural landscapes. 

Habitat loss and fragmentation can disrupt fine-scale movements and dispersal capabilities of some 

arboreal species (Hoehn et al. 2007), prompting some researchers to suggest creating ‘stepping stone’ 

habitats as a method for improving connectivity for arboreal geckos (Kay et al. 2016).  

 

Implications for research and management 

Artificial bark refuges led to the detection of substantially more individuals of the arboreal C. 

marmoratus than terrestrial artificial refuges or active searches suggesting that traditional survey 

methods may significantly underestimate the abundance of this species. The foil-backed, closed-cell 

foam product used in this study was weather resistant over the four years of field deployment, 

suggesting that it is a suitable material for use in short to medium-term studies. Artificial bark refuges 
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also provide a cost-effective and non-invasive, practical method for surveying arboreal nocturnal 

reptiles and will thereby reduce the need to damage critical bark habitat when conducting fauna 

surveys or environmental impact assessments. The need to preserve bark habitat is extremely 

important as, for some tree species, this micro-resource can take decades to accumulate and may not 

be readily renewed when destroyed or damaged. Longer-term assessment of the durability of this 

product in the field will continue. For long-term studies, alternative materials may be required and it 

is recommended that alternative products are tested in the field. 

 

Bark refuges have enormous potential for use in spatial capture-recapture studies (Sutherland et al. 

2016) or for obtaining empirical spatial data on rare and cryptic arboreal species (Bell 2009). For 

inventory and monitoring projects, a combination of census techniques will provide the greatest 

diversity and detection of herpetofauna and it is recommended that artificial bark installation be 

considered to complement other survey methods. An observed delay in herpetofauna colonisation 

following artificial bark installation should be considered when planning deployment of artificial bark 

and monitoring schedules. The use of artificial bark refuges also has application as a temporary 

solution to creating arboreal habitat in ecological restoration programs that aim to improve habitat 

connectivity in fragmented agricultural landscapes. We recommend that further research focus on the 

use of bark refuges as a habitat restoration tool and as a method for procuring records for threatened 

arboreal reptiles in different woodland and forest ecosystems.   
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Figure 1. Terrestrial artificial refuges (left), double stack of corrugated steel, roofing tiles and timber 

railway sleepers. Foil-backed, closed-cell foam (right) used as an arboreal artificial bark refuge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

19 
 

 

 

 

  

Figure 2. Mean abundance (95% credible interval) of the southern marbled gecko Christinus 

marmoratus using three different survey methods between 2013 and 2016. 
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Figure 3. Relationships between the abundance of the southern marbled gecko Christinus marmoratus 

and survey year, tree diameter (cm), bark thickness (cm) and stand basal area (m²/ha) with 95% 

credible intervals.  
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Table S1. List of reptile species recorded and the total number of detections between 2013 and 2016 

(four surveys) using three different survey methods: arboreal artificial refuges, actives searches and 

terrestrial artificial refuges (corrugated steel, timber railway sleepers and terracotta roofing tiles). 

Note: individual animals were not marked, so numbers for some species may represent multiple 

detections over survey years. 
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Gekkonidae        

Southern Marbled Gecko Christinus marmoratus Arboreal 142 7 1 0 0 

Thick-tailed Gecko Underwoodisaurus milii Terrestrial 0 1 0 0 0 

Pygopodidae        

Pink-tailed Worm-lizard Aprasia parapulchella Fossorial 0 1 0 0 0 

Olive Legless Lizard Delma inornata Terrestrial 0 1 0 0 0 

Scincidae        

Southern Rainbow Skink Carlia tetradactyla Terrestrial 0 5 3 2 1 

Ragged Snake-eyed Skink Cryptoblepharus pannosus Arboreal 4 11 0 0 0 

Eastern Striped Skink Ctenotus spaldingi Terrestrial 0 6 8 4 5 

Cunningham’s Skink Egernia cunninghami Terrestrial 0 1 1 1 1 

Tree Skink E. striolata Arboreal 1 0 0 0 0 

Three-toed Earless Skink Hemiergis talbingoensis Fossorial 0 0 1 0 0 

South-eastern Slider Lerista bougainvillii Fossorial 0 0 1 0 0 

Dwarf Skink Menetia greyii Terrestrial 0 2 0 0 0 

Boulenger’s Skink Morethia boulengeri Terrestrial 1 65 123 15 43 

Typhlopidae        

Blackish Blind Snake Anilios nigrescens Fossorial 0 0 1 0 0 

Elapidae        

Dwyer’s Snake Parasuta dwyeri Terrestrial 0 1 0 0 0 

Total number of species   4 11 8 4 4 
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Table S2. Abundance per site estimates of Christinus marmoratus by survey method and relative 

differences of survey methods. The upper part of the table gives the posterior estimates of the 

probability of detection and the associated 95% credible limits. The lower portion of the table, gives 

relative ratios and their associated 95% credible limit for comparison of rates between any two years. 

Note, that if the 95% credible limit does not include 1, we conclude there is evidence of a difference 

between the two detection rates being compared. 

Group Estimated 

abundance 

per site 

Lower 95% credible interval Upper 95% credible interval 

Active searches 0.126 0.047 0.277 

Terrestrial refuges 0.019 0.002 0.087 

Bark refuges 2.585 1.508 3.982 

Relative Differences      

Terrestrial refuges vs  

active searches 

0.156 0.011 0.837 

Bark refuges vs active searches 20.594 9.267 52.375 

Bark vs terrestrial refuges 132.005 29.323 1695.457 
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Table S3. Detection rates of Christinus marmoratus by survey method and odds ratios comparing 

survey methods. The upper part of the table gives the posterior estimates of the probability of 

detection and the associated 95% credible limits. The lower portion of the table, gives the odds ratios 

and their associated 95% credible limit for comparison of odds ratios between any two years.  Note, 

that if the 95% credible limit does not include 1, we conclude there is evidence of a difference 

between the two detection rates being compared. 

Group Probability of detection 

per site 

Lower 95% CI Upper 95% CI 

Active searches 12.9% 4.5% 26.7% 

Terrestrial refuges 1.8% 0.1% 8.0% 

Bark refuges 75.5% 58.1% 88.9% 

Comparisons (Odds Ratio Scale)    

Terrestrial refuges vs  

active searches 

0.13 0.01 0.72 

Bark refuge vs active searches 21.86 7.11 78.67 

Bark vs terrestrial refuge 174.00 30.74 2988.32 
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Table S4. Detection rates per tree of Christinus marmoratus by year and odds ratios comparing yearly 

detection rates. The upper part of the table gives the posterior estimates of the probability of detection 

and the associated 95% credible limits. The lower portion of the table, gives the odds ratios and their 

associated 95% credible limit for comparison of odds ratios between any two years.  Note, that if the 

95% credible limit does not include 1, we conclude there is evidence of a difference between the two 

detection rates being compared. 

Survey Year Probability of 

detection per tree 

Lower 95% CI Upper 95% CI 

2013 8.1% 2.9% 17.4% 

2014 31.4% 17.1% 48.8% 

2015 28.5% 14.7% 45.6% 

2016 26.2% 12.8% 43.0% 

Comparisons (Odds Ratio Scale)    

2014 v 2013 5.16 2.32 13.24 

2015 v 2013 4.49 1.98 11.67 

2016 v 2013 4.03 1.67 10.53 

2015 v 2014 0.86 0.43 1.71 

2016 v 2014 0.77 0.36 1.58 

2016 v 2015 0.90 0.41 1.92 
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Table S5. Summary of models used to explain Christinus marmoratus abundance beneath bark 

refuges and tree characteristics. We used the following short hand to specify the models in the table: 

SY = survey year, TS = tree species, SC = size class, BA = log basal area, BT = log bark thickness, D 

= log tree diameter and LOOIC = leave one out information criteria.  

Model No Model No Terms LOOIC 

1 SY 1 541.40 

2 SY + TS 2 541.93 

3 SY + SC 2 459.44 

4 SY + TS + SC 3 459.82 

5 SY + TS + BA 3 536.35 

6 SY + TS + BT 3 500.09 

7 SY + TS + BA + BT 4 499.83 

8 SY + TS + D 3 441.14 

9 SY + TS + D + BA 4 438.11 

10 SY + TS + D + BT 4 437.01 

11 SY + BA 2 535.08 

12 SY + BT 2 504.18 

13 SY + BA + BT 3 502.26 

14 SY + D 2 441.05 

15 SY + D + BA 3 438.14 

16 SY + D + BT 3 435.33 

17 SY + D + BA + BT 4 433.14 

18 SY + TS + D + BT + BA 5 433.77 
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Table S6. Best fitting model for the abundance per tree estimates of Christinus marmoratus for the 

bark refuge. Note, that the continuous variables have been standardized (on the log scale).  We also 

present the estimated abundance per tree by year assuming tree with the continuous covariates set at 

their mean value. 

Parameter Estimate Lower 95% CI Upper 95% CI 

Intercept (2013) -2.95 -3.88 -2.11 

2014 1.32 0.70 2.04 

2015 1.46 0.82 2.16 

2016 1.65 1.03 2.34 

Log tree diameter 1.06 0.77 1.36 

Log bark thickness 0.28 0.09 0.48 

Log stand basal area 0.23 0.01 0.47 

Random effect SE 1.08 0.62 1.84 

Year estimates Abundance per tree Lower 95% CI Upper 95% CI 

2013 0.05 0.02 0.12 

2014 0.20 0.09 0.39 

2015 0.23 0.11 0.44 

2016 0.28 0.13 0.53 

Relative differences    

2014 v 2013 3.72 2.00 7.71 

2015 v 2013 4.25 2.27 8.67 

2016 v 2013 5.14 2.80 10.34 

2015 v 2014 1.14 0.74 1.74 

2016 v 2014 1.39 0.90 2.12 

2016 v 2015 1.21 0.80 1.86 

 

 

 




