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Abstract. The need to proactively manage landscapes and species to aid their adaptation to cli-
mate change is widely acknowledged. Current approaches to prioritizing investment in species conser-
vation generally rely on correlative models, which predict the likely fate of species under different
climate change scenarios. Yet, while model statistics can be improved by refining modeling techniques,
gaps remain in understanding the relationship between model performance and ecological reality. To
investigate this, we compared standard correlative species distribution models to highly accurate, fine-
scale, distribution models. We critically assessed the ecological realism of each species’ model, using
expert knowledge of the geography and habitat in the study area and the biology of the study species.
Using interactive software and an iterative vetting with experts, we identified seven general principles
that explain why the distribution modeling under- or overestimated habitat suitability, under both cur-
rent and predicted future climates. Importantly, we found that, while temperature estimates can be
dramatically improved through better climate downscaling, many models still inaccurately reflected
moisture availability. Furthermore, the correlative models did not account for biotic factors, such as
disease or competitor species, and were unable to account for the likely presence of micro refugia.
Under-performing current models resulted in widely divergent future projections of species’ distribu-
tions. Expert vetting identified regions that were likely to contain micro refugia, even where the fine-
scale future projections of species distributions predicted population losses. Based on the results, we
identify four priority conservation actions required for more effective climate change adaptation
responses. This approach to improving the ecological realism of correlative models to understand cli-
mate change impacts on species can be applied broadly to improve the evidence base underpinning
management responses.

Key words: climate change impact; endemic species; expert knowledge; fine-scale data; Maxent; rainforest;
refugia; species distribution modeling.

INTRODUCTION

The global scale of climate change impacts on species dis-
tribution and abundance has demanded its increased consid-
eration in management, planning and conservation (Jones
et al. 2016, Reside et al. 2018). Detailed behavioral, physio-
logical, and ecological data sufficient for detailed mechanis-
tic models are available for some species (Kearney and
Porter 2009). For the vast majority of species, however, pre-
dicting the impact of climate change has involved correlative
modeling and trait-based vulnerability assessments (Bellard
et al. 2012, Foden et al. 2013, Reside et al. 2016). Evidence
suggests that the correlative modeling approach can provide
useful insights into the ways that species might be impacted
by, or respond to, changing climate (Tingley et al. 2009).

However, correlative modeling is widely criticized, particu-
larly where species biology and ecology are not taken into
account, and because the correlative approach is highly
influenced by data quality, resolution, model algorithm, and
model parameters (Seo et al. 2009, Reside et al. 2011, War-
ren and Seifert 2011). Substantial advances continue to be
made in this field, resulting in ever-improving standards for
best practice. Yet, given the velocity, magnitude, and uncer-
tainty of the expected changes, further examination is
required to determine whether correlative models accurately
reflect species presence, and particularly the environmental
and ecological reasons for why they do not.
Like all techniques used to aid practical action, species

distribution models and their future projections should be
scrutinized for ecological realism. In particular, inaccurate
models should be examined to elucidate the factors that
affect model performance but are not accommodated by the
correlative modeling process. For example, standard correla-
tive species distribution models do not accurately reflect spe-
cies interactions (but see Pollock et al. 2014 for advanced
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techniques of co-occurrence), and the spatial resolution of
predictor data can vastly influence the climate projections of
species (Reside et al. 2011). Model performance is further
influenced by biogeographic context (Luoto et al. 2005),
baseline climate data (Baker et al. 2016), species adaptive
capacity (Bush et al. 2016), other traits (Santini et al. 2016),
species responses to extreme weather events (Mor�an-
Ord�o~nez et al. 2017), and fire events (Regos et al. 2017). In
many cases, model evaluation is difficult: model quality as
determined by statistical scores can improve without neces-
sarily increasing ecological realism. The problem is exacer-
bated with studies of future climate change impacts, which
assume a species’ current distribution represents the full
range of its climatic tolerances (Ara�ujo and Pearson 2005,
De Marco et al. 2008).
Gaps in data are a key challenge for conservation science

generally and distribution modeling specifically, particu-
larly for under-studied species. Expert knowledge to inform
understanding and to guide management is increasingly
used where decisions need to be made but empirical data
are insufficient (Martin et al. 2012). Expert knowledge is
particularly useful for predicting the impact of climate
change and prioritizing management actions (Foden et al.
2013, Firn et al. 2015, Javeline et al. 2015). Methods have
been developed to minimize bias and uncertainty inherent
in expert knowledge, and to account for wide variances in
knowledge (Martin et al. 2012). Further development of
methods enables shrewd and transparent judgement of the
best conservation actions, which help circumvent the ten-
dency of scientists and managers to delay action because
knowledge is incomplete (Nicol et al. 2018). In a case
where many species require assessment but detailed infor-
mation about each species is lacking, the combination of
expert knowledge and empirical and predictive models can
produce better results than either approach used alone
(Burgman et al. 2011).
We investigate the effect of these data gaps by taking a

regional assemblage of species identified as highly vulnera-
ble to climate change (Williams et al. 2003) and scrutinizing
in detail each species’ prospects under a business-as-usual
climate change scenario in 2085. Our aim was to resolve
where the models underperform and derive guidelines for
using ecological principles to improve these models. We
compare the model projections for species using (1) 1-km
resolution climate predictor data, (2) 250-m resolution
“Accuclim” climate data (Storlie et al. 2013), and (3) the
Accuclim models refined by expert vetting. From these pro-
jections, we quantify the extent and location of spatial dif-
ferences between the three model outputs and examine the
factors that are missed by the first two modeling approaches.
We use the final expert-refined model outputs to predict the
areas likely to harbor important micro refugia in areas
where the models predict widespread loss of suitable climate
and infer key refugial areas for multiple species.

METHODS

Study area

The Australian Wet Tropics (AWT) in northeastern Aus-
tralia (Fig. 1) consists of mixed tropical forests and extends

from coastal lowlands to an elevation of 1,620 m (Williams
et al. 2009). Most of the rainforests of the region are within
the Wet Tropics World Heritage Area. The rainforest is
home to 65 endemic vertebrate species, which are predomi-
nantly confined to cooler, wetter rainforest that occurs at
higher elevations (Williams et al. 2009, 2010). Most of these
higher elevation species (97%) are predicted to be severely
impacted by even moderate climate change (Williams et al.
2003).

Study species

We focused on 17 rainforest vertebrates (eight frog and
nine bird species) endemic to the AWT. We chose the species
to achieve a broad representation of the different ecological
contexts and modeling issues found in the region.

1-km models

The 1-km (0.01°) resolution species distribution models
were fitted with Maxent (Phillips et al. 2006) incorporating
baseline climate (1976–2005) sourced from Australian
Water Availability Project (Jones et al. 2007, Grant et al.
2008). Bioclimatic predictor variables were derived using
the “climates” package in R (VanDerWal et al. 2011a):
annual mean temperature, temperature seasonality, maxi-
mum temperature of warmest month, minimum tempera-
ture of coldest month, annual precipitation, precipitation
seasonality, precipitation of wettest quarter, and precipita-
tion of driest quarter. Species occurrence data were
accessed from Atlas of Living Australia, Queensland
Museum, and the Centre for Tropical Biodiversity and Cli-
mate Change database (Williams et al. 2010, Reside et al.
2013, 2017a). A “target-group background” (Phillips and
Dudik 2008) consisting of the occurrences of all the species
in the same class was used to account for any spatial bias
in the occurrence records. Future climate projections from
the Tyndall Centre (https://www.tyndall.ac.uk/) consisted of
18 general circulation models (GCMs), and the business-as-
usual scenario RCP8.5 (also considered a “severe” climate
change scenario) for the year 2085. The median of modeled
climate suitability across the 18 GCMs for each year was
calculated, and areas beyond a reasonable dispersal dis-
tance from species’ current distribution were removed for
more realistic estimates of future distributions (Warren
et al. 2013). Details of the species data and modeling pro-
cess are described in full detail in previous work (Reside
et al. 2013, 2017a).

Accuclim models

Species distributions modeled using fine-resolution
“Accuclim” climate data were sourced from Storlie et al.
(2013), so the methods are described here only in brief. Spe-
cies occurrence data were obtained from the Centre for
Tropical Biodiversity and Climate Change database and
have been carefully vetted for accuracy (Williams et al.
2010). The climate data were from Australian Water Avail-
ability Project, downscaled from 5-km resolution to 250-m
resolution (detailed methods in Williams et al. 2010). The
temperature consisted of daily Tmax and daily Tmin,
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downscaled using 10 topographic, weather, and environmen-
tal variables resulting in accurate and vetted temperature
surfaces at 250-m resolution, referred to as “Accuclim”
(Storlie et al. 2013). Spatial layers of mean annual tempera-
ture, temperature seasonality, mean maximum temperature
of the warmest month, and mean minimum temperature of
the coldest month were created from the Accuclim data.
Rainfall data were the downscaled Australian Water Avail-
ability Project spatial layers of mean annual precipitation,
precipitation seasonality, precipitation of the wettest month,
and precipitation of the driest month. Spatial surfaces were

created using the “climates” package (VanDerWal et al.
2011a).
Future climate scenarios were created by subtracting the

downscaled Accuclim climate layers from Anuclim climate
layers to generate an “anomaly” layer describing the spatial
pattern of difference between the two (Storlie et al. 2014).
This anomaly can then be applied to the future climate sce-
narios from the Tyndall Centre, producing downscaled
future climate estimates that accounted for topographic and
environmental factors known to decouple climatic processes
from broad to fine resolution. Accuclim species distribution

FIG. 1. An example of a current distribution model for a species, Austrochaperina fryi, in the Australian Wet Tropics region. We use this
species to demonstrate three general principles and their filters on models: rain shadow (top left insert; black shows areas masked out
because there is a sharp transition to dry forest that the distribution model did not reflect), micro refugia (top right inserts), and competition
(brown area has been masked out because the species does not occur there due to probable interspecific competition from the parapatric
species Austrochaperina robusta).
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models for current and projected future were fitted using
Maxent, further described in Storlie et al. (2014).

Post-processing

A threshold was applied to both the 1-km and Accuclim
species distribution models to delineate between where the
species was likely to be present and where it was likely to be
absent. Below the threshold, the habitat suitability was zero
and above the threshold was the continuous habitat suitabil-
ity score. For the 1-km models, the appropriate Maxent-
derived threshold was individually selected for each species
to give the best representation of the species’ ranges as part
of a previous study (details described in Reside et al. 2013).
The Accuclim models all had the Maxent-derived “Balance
training omission predicted area and threshold value” logis-
tic threshold because it was the most accurate for these spe-
cies modeled at this resolution (VanDerWal et al. 2009). For
all models, distribution area was calculated in R (R Core
Team 2014) using the “ClassStat” function within the pack-
age SDMTools (VanDerWal et al. 2011b).

Expert workshop

Eight individuals with expert knowledge of the ecology,
biology, and distribution of the study species and the Wet
Tropics bioregion participated in the workshop. Workshop
participants represented a variety of backgrounds and
perspectives including government scientists, university
researchers, an environment officer from a regional council
group, and a scientist from the Wet Tropics Management

Authority. The Accuclim species distribution models were
converted to kml files and overlaid onto Google Earth, then
were projected with an Epson EB-595Wi (Seiko Epson Cor-
poration, Suwa, Japan) interactive projector onto a table.
Using tabletop computing software and Epson Easy Inter-
active Pens, the experts made graphical annotations on the
projected map that were saved as a png file (Mathieson
2016). The Google Earth background allowed zooming in
to fine resolution to examine the terrain, forest cover of
areas, and distances between forest patches. The experts first
assessed the current distribution of each species to verify the
current models, or to find areas that over- or underestimated
habitat suitability, roughly guided by predefined questions
(Appendix S1). Next, the experts inspected the projected
future distribution of the species and discussed the areas
that were likely to have suitability over- or underestimated,
given the resolution of the data and knowledge of the spe-
cies’ ecology. We did not use a structured elicitation process,
because we had a small group of people with broadly differ-
ing expertise, and found instead that exploratory discussion
of the context and issues surrounding each species proved
very useful. Through discussion and close examination of
the models, the experts developed a set of general principles
that describe the conditions under which the models consis-
tently gave inaccurate estimations, and the species to which
each of the general principles applied (Table 1). These are
likely to be applicable for many more species within similar
contexts, such as mountainous rainforest regions. At the end
of the workshop, there was a thorough discussion of the
conservation priorities required to maintain the persistence
of the focal species in the face of climate change.

TABLE 1. General principles that describe models’ under- or overestimating habitat suitability.

Principle Example region Example species

1. Rain shadow†. Models did not reflect the sharp transitions
from rainforest to drier forest, particularly along the western
edge of the uplands

Windsor Tableland, Carbine
Tableland

Acanthiza katherina

2. Micro refugia†. High topographic ruggedness, southerly
aspect and gullies are likely to maintain cooler areas, but the
models predict regional climate to become unsuitable

Bellenden Ker Range,
Thornton Uplands

Cophixalus neglectus, Ptiloris victoriae

3. Upper temperature tolerance unknown. The upper
temperature tolerance is unknown because the lowland range
is bound by ocean or represented by few records because of
extensive land modification. Models predict species will
disappear from the lowlands but likely they can survive hotter
temperatures than estimated

Mission Beach Orthonyx spaldingii

4. Geographical barriers†. Species do not exist where habitat
modeled to be suitable exists, presumably because of existing
geographic barriers to dispersal. It is assumed these
geographic barriers will continue to be barriers to dispersal
into the future, so species’ suitability masked out of the areas
they are unlikely to be able to disperse. This includes over-
predictions to islands where species does not occur

Black Mountain Corridor,
Seaview Range, Hinchinbrook
Island, Palm Islands, Goold
Island

Litoria dayi, Austrochaperina pluvialis,
Lichenostomus frenatus

5. Competitor species†. Species distribution restricted by
competitor species, despite suitable modeled climate.

Northern Atherton Tablelands,
Lamb Range

Austrochaperina fryi limited by the
presence of Austrochaperina robusta

6. Disease†. Frog species are absent from upland areas of
modeled range due to chytrid (fungus pathogen causing local
and global amphibian extinctions).

Paluma Range, Carbine
Tableland

Litoria lorica, L. nannotis, L. dayi

7. Sparse locality data. Inaccurate models due to paucity of
records in parts of range or species total range very small.

Lowland coastal areas,
mountain top endemics

O. spaldingii; records artificially biased
to uplands
Cophixalus exiguus

Note: Example regions are illustrated in Appendix S1: Fig. S1.
†Spatial filters were applied to improve the fine-resolution Accuclim models.
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Post-workshop model refining

Where possible, we used spatial filters to correct under-
and over-prediction of the current and future species distribu-
tion models using ArcGIS v10.2 (ESRI, Redlands, CA,
USA) based on the general principles outlining the model
limitations (Table 1). The filters were designed according to
expert knowledge of the landscape and species. Brief methods
are outlined below for the spatial filters described as “rain
shadow,” “micro refugia,” “geographical barriers,” “competi-
tor species,” and “disease.” Details of these filters can be
found in the Appendix S1.

Micro refugia.—We combined aspect and topographic posi-
tion to create a fine-resolution (1 arc second, ~30 9 30 m)
spatial layer of the areas most likely to harbor cool, moist
microclimates that decouple from regional climate (termed
“micro refugia” in Rull 2009). To incorporate aspect, we used
the Aspect tool (ArcGIS; ESRI) with a 1 arc second digital
elevation model from Geoscience Australia (2011). The
aspect layer shows the facing direction of any slope in the
study area. It was reclassified into three classes: coolest
(southeast to south facing, 90°–225°), warmest (north facing,
315°–225°), and moderate (all remaining orientations). These
orientations were chosen based on the primary direction of
the sun at the central latitude of the study area. North-facing
slopes receive direct sun for most of the year, decreasing their
suitability for providing refuge from climate warming.
Although south-facing slopes experience direct radiation for
a small portion of the year, this occurs in the summer wet sea-
son when a large number of days are overcast. Therefore, for
this study, it was deemed the north-facing slopes would have
a substantially higher number of days with direct sun.
We used the topographic position index (TPI), created by

Jenness (2006), to further categorize the landscape for micro
refugia suitability. The TPI uses a neighborhood function to
classify the target cell in relation to its surroundings. Using
the topography toolbox created for ESRI, ArcGIS (Dilts
2015), we used a neighborhood size of 100 9 100 cells
(~3,000 m window) to gain optimal resolution of features in
the landscape. This resulted in a range of values from 274
(high peak) to �229 (low valley). The TPI values were classi-
fied into five classes of micro refugia suitability: suitable
(TPI < �150), somewhat suitable (�150 to �20), moderate
(�20 to 20), somewhat unsuitable (20–150), and unsuitable
(>150). The class boundaries were chosen based on the dis-
tribution of values.
The values of the aspect and TPI suitability layers were

added together to create a combined micro refugia suitability.
This combination created six classes, with the highest value
being the most suitable (Appendix S1: Table S1). The experts
identified parts of the species’ distributions that micro refugia
were likely to exist, but were not reflected in the distribution
models. In many cases, experts believed that the micro refugia
would only persist above a certain elevation. In the expert-
identified areas, the micro refugia filter was applied to the
species distribution model, and the habitat suitability score
was increased incrementally according to the TPI score
(Appendix S1: Table S1). For example, where the TPI score
was six (highly suitable), the habitat suitability score was
increased by 0.6 (to a maximum of one). The species-specific

elevational thresholds identified by the experts are listed in
Appendix S1: Tables S2 (birds), S3 (frogs).

Rain shadow.—The experts indicated that many of the mod-
els over-predicted the suitability of parts of the study area
(Fig. 1) because they did not reflect the very steep gradients
in moisture availability and vegetation cover associated with
the rainforest–sclerophyll boundary. This sharp boundary
occurs predominantly along the western edge of the upland
rainforests and is determined by fire, based on a complex
interplay between moisture, aspect, topography, substrate,
and soil (Ash 1988). To address this, the boundary of the
extent of rainforest along the western side of study area was
defined using the Queensland Government’s Regional
Ecosystems data (version 8.0 published November 2013;
Accad and Neldner 2015) to identify non-rainforest vegeta-
tion types (all of which are subject to fire). Regional Ecosys-
tem maps are presented at 1:50,000 scale, and the map units
are accurate to ~1 ha. We created a mask using the non-
rainforest vegetation types to exclude the over-predicted spe-
cies distributions in the west.

Geographical barriers.—The models often predicted suitabil-
ity of habitat in places where the experts were confident that
the species does not occur, and these locations were often
remote from the species current distributions and beyond pre-
sumably insurmountable geographical barriers such as the
ocean or inhospitable vegetation types (e.g., non-rainforest).
The most common over-predictions of suitability were to
islands where species did not occur. Given these species are
not occupying this habitat now, presumably as a result of dis-
persal limitations, they are unlikely to in future even if habitat
suitability increases. The areas beyond the geographical barri-
ers where species were absent, particularly the islands, were
therefore masked out of the study area for these species.

Disease.—Chytridiomycosis disease, caused by the “chytrid”
fungus (Batrachochytrium dendrobatidis), has caused large
losses to the populations of some frog species within the
study area, so that they no longer occur in parts of their for-
mer ranges (Puschendorf et al. 2011). Chytrid is present
throughout the Wet Tropics but only impacts populations of
susceptible species in cooler mid and upland rainforest
(Puschendorf et al. 2011, Scheele et al. 2017). Hotter tem-
peratures are less optimal for chytrid: temperatures above
26°C significantly slow growth, with a lethal thermal maxi-
mum at 28–29°C for Queensland-derived chytrid (Stevenson
et al. 2013). For chytrid-impacted species, the experts identi-
fied the current upper elevation limits imposed by chytrid,
which were not reflected in the distribution models. Using
the mean temperature of every grid cell at the current upper
elevation limit (�1 m) for each affected species, we calcu-
lated the mean elevation in which the upper elevation limit
would likely be in 2085 under the severe climate change
future. For each species, we masked out the modeled areas
that were above the elevation limit for both current and the
predicted future elevation limit. In some cases, the chytrid
fungus has extirpated isolated populations, and in these
cases, the population was removed from the model by reduc-
ing the probability in the affected areas to zero. There is evi-
dence that some of the affected species are moving back into
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areas they had disappeared from due to chytrid (McKnight
et al. 2017, Scheele et al. 2017), and it is likely that in the
future they will continue to recolonize up the elevation gra-
dient. However, we could not build this into the models due
to a lack of data on the rate or potential ultimate extent of
this recolonization.

Competitor species.—For some species, the models over-pre-
dicted the distribution into areas occupied by ecologically
very similar species. Such species pairs were generally known
to be sister species from genetic analyses and deemed by the
experts to have highly congruent ecological niches. For
example, Austrochaperina robusta occupies the southern half
of the Wet Tropics region and Austrochaperina fryi occupies
the northern Wet Tropics. The two species abut in a narrow
contact zone through the central Wet Tropics where there is
limited hybridization (Hoskin 2004). These species appear
to be ecologically equivalent and hence strong competitors.
In cases like this, where the experts could make a strong case
for competitive exclusion, the spatial extent of a competitor
was masked out from the potential distribution.

Sum of species

We summed the models to estimate the number of our 17
vertebrate species predicted to occur in each cell across the
study area. This was to help identify problematic areas that
could consistently be over- or under-estimated in impor-
tance and to identify areas that are likely to be highly impor-
tant. We created binary suitable/not suitable model outputs
using the same species-specific Maxent thresholds as
described above, but instead of a continuous suitability
above the threshold, suitable areas were scored as “1.” For
each of the three modeling approaches, 1 km, Accuclim and
expert-refined Accuclim, and for current and future, we
summed the binary distribution models to achieve a sum of
species estimate.

RESULTS

Workshop

The distributions of eight bird and nine frog species were
examined in detail by the experts during the workshop, cho-
sen from the pool of 65 endemic birds and frogs modeled in
the study area to represent the different ecological contexts
experienced by endemics in the region (Appendix S1:
Table S1). The interactive tabletop computing software and
projector were highly useful tools for visualizing and inter-
acting with the areas and the models in fine detail. The tech-
nology enabled detailed communication of the ecological
concepts underpinning actual vs. modeled distribution of
species, which was important due to the diversity of exper-
tise on the panel. The visualization tools were also useful for
examining focal areas of the landscape and their influence
on species and the model outcomes. The experts derived
seven general principles that describe how the distribution
modeling under- or overestimated habitat suitability
(Table 1). The inability of the models to accurately reflect
fine-scale, moist, cool, rainforest conditions was the biggest
issue across all species. For rainforest endemics, high

moisture availability and cool conditions are important dri-
vers of habitat suitability, and nuanced fine-scale moisture
and temperature are difficult to model. The “rain shadow”
general principle was established to account for the sharp
transition between rainforest and drier forest to the west of
the range, which was consistently poorly modeled (Table 1).
There were two general principles required where models
inaccurately represented response to temperature: “micro
refugia” and “upper thermal tolerance unknown.” Micro
refugia were missed by even the fine-resolution Accuclim
models, resulting in likely over-projections of widespread
range retraction in the future. Where the upper thermal tol-
erance was not adequately represented by the species’ cur-
rent distribution model because hotter temperatures in the
region do not currently exist, or the species distribution is
bound by an ocean, future projections were likely to over-
state range loss from climate warming. Additionally, the
models did not always accurately reflect non-climatic limits

FIG. 2. Demonstration of the disease principle for over-predic-
tion illustrated for Litoria nannotis. Areas in black have become
unsuitable because of chytrid infection (A). These areas are pre-
dicted to retract by 2085 as the warmer conditions give the frog spe-
cies competitive advantage (B). At the same time, other parts of the
species’ range are predicted to become unsuitable due to the more
direct effects of climate change.
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to species distributions. Four general principles reflected
limiting factors other than climate: “competitor species”
(Fig. 1), “disease” (Fig. 2), “geographical barriers,” and
“sparse locality data.” Of the seven general principles, spa-
tial filters could be applied to account for five (Table 1).

General principles related to climate

Of the seven general principles behind under- and over-
prediction, “rain shadow” was the most commonly applied
(12 out of 17 species), reflecting how poorly the sharp transi-
tion to non-rainforest habitat was reflected in the models
(Fig. 1). The Accuclim climate data, which refined the dis-
tribution models considerably from standard interpolated
climate data (used for 1-km models), improved only the tem-
perature predictions (Storlie et al. 2013), but used standard
interpolated rainfall data. The current rainfall data did not
accurately reflect the rain shadow areas and the drier west-
ern edges of the mountain ranges, or the magnitude of the
orographic rainfall effect on the eastern side of some moun-
tains (Appendix S1: Fig. S4). In some cases, species such as
Cophixalus bombiens were under-predicted on the wetter,
eastern edge of the mountains. The rain shadow principle
was applied to the future distributions of five frogs (Fig. 3A)
and all but one bird species (Fig. 3B). It also led to the lar-
gest proportional decreases in the amount of suitable area
modeled for each species it was applied to, except for Litoria
nannotis, which lost more area when the disease filter was
applied.
Micro refugia were the second most commonly applied

principle (11 species; Fig. 3) and relate to inaccurate esti-
mates of water availability and temperature at micro
(<250 9 250 m grid) scales. The experts identified regions
that were likely to contain localized microclimates suitable
for micro refugia, even where the future projections of spe-
cies distributions predicted population losses. Micro refugia
that occur within small creek lines, gullies, and rock piles
could be missed at 250-m grid size, but were identifiable at
the 30-m grid scale (the resolution of the digital elevation
model used to create micro refugia filter). These types of
micro refugia are likely to be suitable for all frogs in the fam-
ily Microhylidae in our study: the species in the Aus-
trochaperina and Cophixalus genera. The micro refugia
areas were also likely to be suitable for some bird species:
experts also reported seeing Bridled Honeyeater (Lichenos-
tomus frenatus), Blue-faced Parrot-finch (Erythrura tri-
chroa), Pied Monarch (Arses kaupi) and Victoria’s Riflebird
(Ptiloris victoriae) along gullies and creek lines that traverse
otherwise unsuitable habitat (e.g., drier forest, agricultural
areas). The application of the micro refugia filter (Fig. 1)
increased habitat suitability of some areas and led to small
but potentially important increases in the overall suitable
area available to the relevant species (Fig. 3A, B).
The principle “upper thermal tolerance unknown” was

required because the upper temperature limit of some future
distribution models was the same as the hottest temperature
of the region where the species had been recorded. As a
result, some models over-stated the importance of cooler
upland habitats for some species, and experts believed that
future distributions were overly constrained by high tempera-
tures, as evidenced by severe contractions in future

projections of suitable climate. In some cases, the upper ther-
mal tolerance of species was unknown because parts of the
species’ likely former ranges (usually the lowland parts, which
are hotter) have been lost to historic land conversion. In
other cases, the upper temperature tolerance of species was
unknown where species distributions were limited by the
coastline, rather than unsuitable terrestrial conditions. There
were other cases where locality data were missing from smal-
ler patches of lowland forest where the species could poten-
tially occur, which applied to the Chowchilla (Orthonyx
spaldingii). Experts had seen Chowchillas in small lowland
fragments, but these observations were not captured in the
available locality data, and severe future climate change pro-
jections of this species’ range are believed to be an inaccurate
reflection of its temperature tolerance. We were unable to cre-
ate a spatial filter for this principle because more extensive
field data collection would be required.

General principles related to non-climatic factors

Geographical barriers, which in this region include unsuit-
able vegetation, are likely to be a contributing factor deter-
mining species absence from areas modeled to be suitable.
Where this was the case for our study species, we applied a
“geographical barriers” filter that excluded parts of the spe-
cies range where they were absent, presumably due to disper-
sal barriers. Dry, non-rainforest vegetation (mostly wet and
dry sclerophyll forests) is a dispersal barrier to the smaller
and often remote rainforest patches. In some cases, the
Accuclim models improved on the 1-km models, with areas
modeled as unsuitable where species were absent, but for
others, areas modeled as suitable by Accuclim had to be
removed with a geographical barriers filter.
There were five species for which suitable climate space

was predicted for islands to the east of the region’s coastline,
although the species had not been recorded on one or more
of these islands. Over-prediction to islands is considered
here a subset of the “geographical barriers” principle, where
species could theoretically survive on the island but have
been prevented from dispersing to or recolonizing the island
after a local extinction. However, there could be other rea-
sons for species’ absence on islands, which may function dif-
ferently compared to climatically similar sites on the
mainland due to local-scale processes and assemblages. It is
unlikely that species with low dispersal capacity, such as
most of the frogs, would be able to disperse to the islands in
the future despite any modeled increase in habitat suitability.
Altogether, the “geographical barriers” filter was applied to
seven species, which removed only a small proportion of any
species’ suitable modeled area (Fig. 3A, B).
Competitor species were the limiting factor for the distri-

butions of three frog species in our study. For example,
A. fryi was limited by the presence of A. robusta. In these
cases, we used a “competitor species” filter to mask out the
areas modeled as suitable where the target species did not
occur because of its competitor.
The general principle “disease,” where species do not

occur because disease resulted in local extinctions, was rele-
vant to three of the frog species (Litoria lorica, L. nannotis,
and L. dayi; Fig. 3A). These, and other frog species not
included in this study, have become locally extinct in the
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FIG. 3. The proportion of the species distribution that is gained or lost after applying the general principles to the Accuclim models, to
produce the expert-refined Accuclim models, for (A) frogs and (B) birds. The principles are as follows: RS, rain shadow; MR, refugia; GB,
geographical barriers; C, competition (frogs only); D, disease (frogs only). Species code names are defined in the Appendix S1: Table S1.
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upper and cooler parts of their ranges due to infection by
chytrid fungus. The presence of chytrid changes the optimal
climate for the species, so that they are restricted to lower
elevations. For these species, the upper elevations had to be
removed from their ranges (Fig. 2).
The final general principle was “sparse locality data.”

While this general principle contributes to others, such as
“upper thermal tolerance unknown” and “disease” (through
having outdated data), it is significant in its own right in
constraining model accuracy for all species. We did not
include a filter for this general principle, as it requires
instead a specialized modeling approach, and ideally more
field data.
Comparing the three modeling approaches, 1 km, Accu-

clim, and expert-refined Accuclim, revealed interesting dis-
tinctions for both current and future projections of species
distributions (Fig. 4). This is shown in detail for the Golden
Bowerbird (Amblyornis newtonianus), which had the rain
shadow, micro refugia, and geographical barriers filters
applied (Appendix S1: Table S1) to the Accuclim model to
obtain the expert-refined Accuclim model (Fig. 4). The 1-
km model for Golden Bowerbird over-predicted current
suitability throughout the study region, particularly the low-
lands, which then appears to result in proportionally greater
area lost by 2085. The 1-km models did not accurately
reflect the current level of natural and anthropogenic rain-
forest fragmentation, which could be the main driver of the
over-prediction. The Accuclim and expert-refined Accuclim
predicted smaller current distributions and proportionally
smaller areas lost in the future. Therefore, the expert-refined
Accuclim models predict a higher proportion of golden
bowerbird’s range to remain suitable into the future.
The maps showing the sum of the 17 species in this study

followed a similar patter to that for the Golden Bowerbird,
with substantial spatial differences in the modeling
approaches (Fig. 5). The expert-refined Accuclim sum of
species reveals a far more fragmented pattern of high rich-
ness than indicated by the 1 km or the Accuclim models.
This fragmentation more accurately reflects the lack of cor-
ridors available for species to track their climate niche into
the future. The expert-refined Accuclim sum of species high-
lights the importance of the Carbine and Windsor Uplands
for the 17 species chosen for this study, particularly into the
future (specific locations shown in Appendix S1: Figs. S1,
S2). The expert-refined Accuclim sum of species shows that
the Finnigan and Thornton Uplands are likely to have fewer
of these species. This is also the case for Hinchinbrook
Island and Mount Spec Uplands.

Expert recommendations for conservation actions

The experts discussed the conservation actions that they
believed to be important for species persistence in the face
of climate change. The consensus that emerged is summa-
rized in the four points below.

1) Species governed by the rain shadow rule require fire
management. The species occurring at the edge of the
wet rainforest areas are vulnerable to degradation or loss
of habitat due to fire, because of the drier, more flam-
mable vegetation (such as monsoon forest, sclerophyll

forest, and savanna woodland) bordering their distribu-
tions. Climate change could likely exacerbate this
(Stevens-Rumann et al. 2018).

2) Isolated peripheral populations of species are likely to be
important and should not be ignored by management.
While most conservation action focuses on larger, intact
vegetation patches, isolated areas could retain popula-
tions of individuals that are pre-adapted to the climatic
conditions likely to be more widespread in the future. In
some cases, not connecting naturally isolated pockets of
rainforest with other rainforested areas, maintaining
their isolation, could help maintain evolutionary trajec-
tories (Phillips et al. 2016). Individuals adapted to mar-
ginal conditions could be candidates for targeted gene
flow translocations (Kelly and Phillips 2016).

3) Connectivity between core populations is important and
should be enhanced and maintained where possible. How-
ever, connectivity should be investigated in a species-by-
species context and not prioritized over protecting larger
areas without full scrutiny of the trade-offs (Hodgson
et al. 2011, Mair et al. 2014), particularly where naturally
isolated pockets of rainforest could be important for local
adaptation that house candidates for targeted gene flow
translocations (Kelly and Phillips 2016).

4) Monitoring and evaluation are important for under-
standing many important aspects of conservation.
Important information to collect includes (a) population
trajectories (which could change rapidly); (b) whether,
and where, the population is responding to changes in
climate; (c) if species are responding to changes in cli-
mate, whether they are they responding at the predicted
rate; and (d) the success of conservation actions.

DISCUSSION

Accurate and comprehensive data, and robust predictions,
are required for maximizing benefits from conservation
action. This is especially challenging for climate change
impact studies, where the uncertainty is high (Reside et al.
2018). This study demonstrated that spatially coarse or
unrefined species distribution models can inflate the current
suitability for species and subsequently inflate the predicted
losses for species in response to severe climate change.
Model over-predictions can lead to conservation resources
being invested into areas that are suboptimal or even where
species are absent, at the expense of areas that are crucial for
species persistence. In this study, the Carbine and Windsor
Uplands in the northwest of the study region (Appendix S1:
Fig. S1) are likely to be crucial for the persistence of many
of the 17 species in the face of climate change, whereas the
Finnigan and Thornton Uplands are important for fewer
species, a distinction not made with the standard Accuclim
models.
This study highlights that even fine-scale models using

ground-truthed and refined temperature data can harbor
inaccuracies in habitat suitability for species. The most
important inaccuracies result from the models’ inability to
reflect fine-scale variability in moisture and temperature,
and hence the presence of suitable micro refuges for rain-
forest-dependent taxa. While temperature data were able to
be refined, this was not the case for rainfall data.
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Furthermore, moisture availability is further underestimated
by missing orographic precipitation, reduced evaporation
from cloud cover and rain shadow areas. These factors are

substantially more difficult to model and interpolate at the
landscape scale. In the study area, this leads to an underesti-
mation of moisture availability on the eastern side and

FIG. 4. Suitable climate for the Golden Bowerbird (Amblyornis newtonianus; species code: GOLDBB) predicted by the 1 km (top row),
the Accuclim (middle row), and the expert-refined Accuclim (bottom row) models. The first and second columns show a continuous habitat
suitability score; the third column shows the areas that are lost (red), gained (blue), and retained (green) from current to future for each of
the modeling approaches, based on binary suitable/not suitable models.
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overestimation on the western side of mountain ranges.
Other data, such as vegetation greenness indices (Mackey
et al. 2012), can more accurately indicate moisture availabil-
ity, but these data are generally unavailable for future predic-
tions of evapotranspiration and rainfall.
Other aspects of prediction that are missed by even the

fine-scale Accuclim models include species interactions,
which have long been noted as important for accurately rep-
resenting species distributions (Ara�ujo and Luoto 2007,
Bateman et al. 2012). In this study region, the important

interactions that are not captured by the unrefined Accuclim
models include competitor species. This is relevant for the
current models and likely to be highly influential into the
future. For example, species such as C. bombiens and
Cophixalus ornatus are probably currently limited by com-
petitor Cophixalus frog species that occupy “core” upland
areas. If their competitors are disadvantaged by climate
change, these species may be able to expand their ranges into
the vacated niche space. There have been some advances for
incorporating species interactions, such as dominance among
species, into correlative distribution modeling through joint
species distribution models (Crase et al. 2015). Such interac-
tions have been incorporated into frog distribution models
(Pollock et al. 2014). However, the appropriateness of each
technique is likely to differ depending on the specific and
environmental contexts (Anderson 2017). Furthermore,
understanding the full complexity of all biotic interactions,
how these are driven by environmental conditions, and how
they are likely to be altered is still beyond current scientific
capacity, although there have been gains in this field (Wal-
lach et al. 2017). Our use of expert vetting attempted to par-
tially fill some of the knowledge gaps for our region, by
masking out suitable habitat occupied by a clear competitor
or excluded by known disease impacts.
Climate change will exacerbate many of the factors that

cause species declines. Planning for climate change adapta-
tion will be optimized by drawing upon the field of systematic
conservation planning (Schmitz et al. 2015, Reside et al.
2018). This involves setting specific objectives such as plan-
ning for species persistence, identifying the costs, benefits,
and trade-offs for each relevant conservation action, and
incorporating the uncertainty involved in each step (Reside
et al. 2018). Innovative actions such as temporary reserves
(Pressey et al. 2007) and targeted gene flow (Kelly and Phil-
lips 2016) could be considered, while acknowledging their
limitations (Moilanen et al. 2014). An adaptive management
approach is required, as success will depend on review of the
effectiveness of actions and adapting these as new informa-
tion is available (McDonald-Madden et al. 2010b). This in
turn will require ongoing monitoring to understand how spe-
cies will respond to the changing conditions. Population mon-
itoring is routinely underfunded and thus neglected, yet is a
critical tool for determining population and distribution tra-
jectories. Species models fitted for baseline climate make use
of the pool of species data that have been collected often over
many decades. To accurately detect impacts of climate change
on species in relatively shorter time periods (i.e., within one
decade), survey effort would need to be increased for many
species. However, monitoring programs, like all conservation
interventions, should be subject to rigorous cost-benefit anal-
yses (McDonald-Madden et al. 2010a).
In most cases, the important habitat for most of our species

is within the current protected area network, both currently
and under future projections (Fig. 4). Key areas in the north-
west are Windsor Tableland (Mount Windsor National Park)
and Carbine Tableland (Mount Lewis, Mount Spurgeon, and
Daintree National Parks, Appendix S1: Figs. S1, S2). For spe-
cies in this region, maintaining habitat integrity within the
national parks is important, including managing invasive spe-
cies and fire (particularly at the western edge). Areas in the
Atherton Uplands in the central part of the region are

FIG. 5. Sum of the 17 species models, as predicted by the 1 km
(top row), the Accuclim (middle row), and the expert-refined Accu-
clim (bottom row) models.
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currently lacking protection and have been identified as prior-
ities for habitat restoration and land management compatible
with conservation (Shoo et al. 2011). These areas have high
potential for carbon sequestration and storage in addition to
high conservation value, so should be considered for native
carbon plantings (Reside et al. 2017b). Despite the protection
of rainforest within vegetation legislation, “endangered” and
“of concern” Regional Ecosystems within the Wet Tropics
bioregion are being cleared faster on private land than “least
concern” ecosystems (Rhodes et al. 2017). Therefore, regions
identified herein as having high importance for the endemics
should be evaluated for threat of habitat loss and considered
for inclusion in any expansion of the protected area network.

Caveats

We chose an informal elicitation process for this study,
using exploratory discussion across the group, for several
reasons. In particular, our experts had broad expertise: sev-
eral knew the landscape and its management very well, but
did not have strong knowledge of the species. Therefore, dis-
cussion among experts was helpful to elucidate the interac-
tions between the nuance of the landscape and the likely
species’ responses. While structured elicitation processes
have been shown to be extremely useful (Martin et al. 2012,
Firn et al. 2015), these require having a sufficient number of
experts on these very restricted species that occur in a
remote and unpopulated part of Australia. We recommend
further studies endeavor to use the structured elicitation pro-
cess wherever possible, and use the standard methods to
quantify the uncertainty across experts.
Our study attempts to address the issue of achieving

greater ecological realism of species models, beyond standard
statistical validation techniques. For our study, the applica-
tion of some of the general principles we identified could pos-
sibly lend themselves to statistical validation, such as “rain
shadow,” “geographical barriers,” and “competitor species.”
However, the application of several of our general principles
does not lend themselves to standard validation techniques
with the data that are currently available. For example, the
likely areas of suitable “micro refugia” are relevant at a much
finer scale than the models were run, and need field testing to
understand whether these areas are useful to species, particu-
larly in extreme weather conditions. Validation of the models
where the “disease” filter was applied would require thorough
resampling of the species presence and absence after the dis-
ease has caused local extinctions. The problem of “sparse
locality data” plagues both the initial model runs and the
ability to statistically validate the models. In all cases, validat-
ing the projections of the species models under climate
change scenarios cannot be done, as the future is yet
unknown. For this reason, the general principle “upper ther-
mal tolerance unknown” is difficult to validate because the
problem is only apparent for future projections, and under-
standing this parameter would require some physiological
and, in some cases, behavioral data.

CONCLUSIONS

Our study found that the absence of both fine-scale temper-
ature and water availability data, and the addition of detailed

expert knowledge, resulted in divergent prioritizations of the
important areas for species persistence under climate change.
In many cases, fine-scale predictor data or accurate species
data may not be available. These situations are likely to bene-
fit even further from adopting a similar approach to that we
have presented here, by taking species- and region-experts to
examine the likely reality of model predictions and their flaws.
The general principles outlined here should be a first step,
particularly for other coastal, mountainous regions.
Although unable to accurately account for every nuance of

species distributions, expert knowledge enabled critical evalu-
ation of the model outputs and identified the conditions
under which these deviated from reality. Modeling techniques
need to be developed to specifically address some of the defi-
ciencies identified in this study. Necessary improvements
include (1) more accurate data on moisture availability across
the landscape; (2) micro-habitat buffering associated with
substrate, topography, and aspect; (3) disentangling thermal
tolerances from artefacts of land use change or geography to
explain species restriction to uplands; and (4) for frogs, better
understanding of species range dynamics in the presence of
chytrid fungus. Combined approaches of modeling and
expert knowledge will be important for robust models and
future predictions of species for most modeling studies.
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