This is the peer reviewed version of the following article: Stojanovic, D., Young, C., Troy, S. and Heinsohn, R. (2020), Evaluation of intervention aimed at improving reproductive success in Orange-bellied Parrots *Neophema chrysogaster*: Lessons, barriers and successes. *Ecological Management & Restoration*, Vol. 21, Iss. 3, Pp 205-210; which has been published in final form at https://doi.org/10.1111/emr.12422.

This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

1 Evaluation of intervention aimed at improving reproductive success in Orange-bellied Parrots

2 Neophema chrysogaster: lessons, barriers and successes.

3 Summary

4 Assessing feasibility and identifying constraints that affect project implementation is a crucial step 5 for planning long-term species recovery actions for field-based programs. We report on the 6 outcomes of a conservation intervention on the most endangered parrot in the world, the Orange-7 bellied Parrot Neophema chrysogaster. We aimed to trial new techniques to increase reproductive 8 success of wild nests and address key knowledge gaps. We aimed to achieve higher reproductive 9 success using (i) intervention – where fertile eggs or nestlings would be fostered from captivity to 10 wild nests that suffered infertility or had small brood sizes, and (ii) rescue - where wild-born 11 nestlings would be removed from nests if they were ailing and either fostered to another nest or 12 hand reared to improve their survival. Our project provided proof of principle that it is possible to 13 implement intensive, individual level monitoring and intervention (via fostering of nestlings to 14 infertile nests) to address reproductive problems for the Orange-bellied Parrot. However, we also found important factors that hindered our ability to achieve project aims (management of 15 16 biosecurity), and identified unexpected factors that have important implications for future 17 application of these techniques (nest abandonment from video camera deployment, rapid death of unhealthy nestlings hindering rescue attempts). Our project tested techniques and tools to provide 18 19 new approaches for fighting extinction of the Orange-bellied Parrot, and yielded important new 20 information about the species ecology and management options.

21 Key Words

22 Conservation intervention and management, fostering, nest monitoring, disease management,

23 reproductive management, hand-rearing and captive management

24 Introduction

25 Conservation interventions to manage threatened species can be critical to population recovery. The 26 most effective species recovery projects identify clear factors that are driving decline, and 27 implement targeted conservation action to remedy these threats and alleviate pressure on 28 populations (Scheele, et al. 2018). However, clear diagnosis of threats is not always possible for 29 species lacking detailed data on ecology and demographic processes (Bland, et al. 2015). In such 30 cases, by necessity managers might implement conservation actions iteratively by means of trial and 31 error in an adaptive management framework (Gerber and Kendall 2018). Clear performance metrics 32 that relate to the focal ecological process targeted by the intervention are crucial for effective 33 evaluation of conservation interventions (Doherty and Ritchie 2017; Wintle, et al. 2010). Part of this 34 process includes assessing feasibility and identifying constraints that affect project implementation, 35 which is a crucial step for planning long-term species recovery actions (Walls 2018). 36 We report on the outcomes of a conservation intervention on the most endangered parrot in the 37 world, the Orange-bellied Parrot Neophema chrysogaster. The decline of the wild population of this species to only 3 wild-born females and 13 males in 2016 triggered this project (Stojanovic, et al. 38 39 2018). We aimed to trial new techniques to increase reproductive success of wild nests and address 40 key knowledge gaps. We aimed to achieve higher reproductive success using two approaches: 41 1. intervention – where fertile eggs or nestlings would be fostered from captivity to wild nests that suffered infertility or had small brood sizes, and 42 2. rescue – where wild-born nestlings would be removed from nests if they were ailing and 43 44 either fostered to another nest or hand reared to improve their survival. 45 These approaches are not, in themselves novel because they have been successfully trialed and 46 implemented on many other species (for a summary of techniques and case studies see Jones 2004). 47 However, past applications of this intensive conservation management have most often been applied to sedentary, or island dwelling birds. Migratory species like the Orange-bellied Parrot pose 48 49 substantial additional conservation challenges and also live in very remote, difficult to access

50 locations. In addition, the project sought to trial video monitoring as an approach to increase the 51 resolution of nest monitoring data and improve capacity to achieve intervention and rescue. These 52 aims were undertaken in context of ongoing complementary work on Orange-bellied Parrots by the 53 Tasmanian Government and their collaborators in the species recovery team (Department of 54 Environment Land Water and Planning 2016; Troy and Hehn 2019). Here we summarize the aims, 55 rationale, methods and results of the conservation interventions we trialed. We also explain barriers 56 to success and limitations of our approach, in the hope that these factors can help inform other 57 similar projects on threatened species.

58

59 Methods

The project ran between September 2016 – June 2019, spanning three field seasons overlapping the
Orange-bellied Parrot breeding season (Sep – Mar). We present our aims, monitoring approaches
and evaluation criteria based on the Australian Government Monitoring Evaluation Reporting and
Improvement Tool (MERIT:

https://fieldcapture.ala.org.au/;jsessionid=FE76A594F6E3D265018D76D295501F88) because this 64 65 approach is widely utilized for evaluating on-ground environmental projects in Australia. Project 66 outcomes and monitoring indicators are presented in Table 1. Nest boxes were checked either 67 manually by climbing trees or by reviewing recordings from video cameras (model HK101182w 68 www.handycam.com) mounted inside nest boxes or on the outside of boxes (Reconyx Hyperfire 69 HC600). We checked egg fertility by candling eggs using a small flashlight. We monitored nestling 70 condition (for the rescue component of the work) using the approach described by Stojanovic et al. 71 (2020b) for estimating body condition. We tested all captive animals selected for use as donors of 72 eggs or nestlings for Psittacine beak and feather disease virus (BFDV) from blood samples (Troy and 73 Kuechler 2018).

74 Results

75 Below we summarize our evaluation of success against the project outcomes and monitoring 76 indicators. We also identify key barriers, lessons, costs and benefits for each method used in the 77 project. In total we monitored 53 nests, deployed video recorders inside 15 nest boxes, attempted 78 intervention to correct egg infertility on 4 nests, and rescued 5 nestlings either by fostering or hand-79 rearing. Unfortunately most nestlings fostered in the intervention component of the project died 80 (only one of five nestlings survived to migrate), but these results were skewed by a disease outbreak 81 (Stojanovic, et al. 2018). Disease risk management was a major challenge during implementation of 82 the project, and outbreaks of disease directly hindered our project objectives in two of three years. 83 We developed an index of nestling body condition that was used to identify candidates for rescue 84 (Stojanovic, et al. 2020a), and evaluated the efficacy of nest competitor control (Stojanovic, et al. 85 2019).

On average per year, the project cost approximately \$20,000 AUD for travel to and from the field
site, \$50,000 for personnel, \$5,600 for disease screening of captive birds for BFDV (comprising ~\$280
in tests per bird), plus capital expenditure (\$15,000 for video cameras, \$3,000 for purchase of
additional nest boxes).

Desired	years	Monitoring	Evaluation	Barriers	Key Lessons	Benefits of the	Costs of the
outcome	implemented	approach				approach	approach
Nest boxes	2016 - 2018	1) record the	All nest boxes	Video camera	Dummy cameras	Improved	Risk of nest
cleaned and		ID of boxes	were cleaned	deployment could	(matchboxes	resolution of nest	abandonment
video cameras		cleaned and	annually; video	not be ruled out as	wrapped in black	monitoring at	(1/15 nests); high
installed		fitted with	cameras	a cause of two	tape) were installed	reduced effort;	per unit cost of
		cameras	installed on	nest	in all boxes in 2018	new information	video cameras
			active nests	abandonments	to enable	about breeding	
			(2017 n = 5,	(one each in 2017,	acclimatisation to	behaviour	
			2018 n = 10)	and 2018)	cameras		
Early	2016 - 2018	1) Determine	All nests	Personnel costs	Parent provenance	High quality,	High workload for
identification		parent	monitored	are high for the	difficult to ascertain	detailed data on	frequent nest
of nest		provenance	(2016 n = 17,	frequent	with cameras,	nest timing, early	checking, requiring
productivity		(captive- or	2017 n = 14,	monitoring	easier with direct	identification of	extensive climbing
and		wild-born) to	2018 n = 22);	required to	observations.	infertility provides	effort (minimum

identification	ensure only	egg fertility	determine nest	Identification of	opportunity to	four climbs per
of foster	captive origin	monitored;	timing and	mothers inside the	improve	nest to clean box,
candidates	nests used in	nestling survival	fertility, but costs	nest box is	productivity in	confirm nest
	fostering	and body	alleviated by video	disruptive. Body	poor nests.	initiation, check
	2) Timing of	condition	cameras because	condition index is	Identification of	egg fertility and
	important	monitored	the interval	costly to develop	mothers very	ring nestlings).
	nest phases		between manual	but removes	accurate. Reduced	Development of
	determined		checking is longer	ambiguity of	uncertainty for	body condition
	3) Identify		without loss of	subjective health	identifying when	index is labour
	infertile eggs		information due to	assessments.	nestlings are	intensive and
	within 14		video recordings.		unwell and need to	requires very
	days of egg		Personnel costs		be fostered or	frequent handling
	laying 4)		high to identify		rescued.	of animals for
	develop and		fathers.			model
	index of body					development
	condition for					

		nestlings to					(Stojanovic <i>, et al.</i>
		empirically					2020a).
		evaluate					
		nestling					
		quality and					
		identify					
		fostering					
		candidates					
Reproductive	2016 - 2018	1) implement	Intervention	Intervention was	(1) Biosecurity is	Intervention	The feasibility of
success		intervention	had mixed	dependent on the	important but the	showed (limited)	intervention is
improved by		(fostering of	results (2016 –	availability of	impacts of disease	proof of concept	subject to several
implementing		nestlings to	one of five	donor nests in	on demographic	that fostering is a	unrelated limiting
intervention		correct egg	nestlings	captivity to	parameters must	potential tool for	factors (need,
and rescue		infertility or	successfully	supplement wild	be weighed against	increasing	timing,
actions		nestling	fostered, 2017 -	nests. Donor nest	the impact of	reproductive	biosecurity,
		mortality); 2)	no fostering	availability limited	biosecurity	output. Rescues	funding) and in

	implement	necessary due	by: (1) biosecurity,	protocols reducing	showed that	two of three years
	rescue (ailing	to high fertility	e.g. disease	scope for on-	nestlings benefit	these factors
	nestlings	in the wild,	outbreaks in 2016	ground	from being	prevented
	identified by	2018 - fostering	and 2018 stopped	intervention. (2)	removed from	implementation of
	body	abandoned due	transfer of birds	high personnel	nests where they	interventions.
	condition and	to BFDV in	from captivity to	costs may be	are	Rescue had limited
	either	captive donor	wild, affecting	unavoidable if	underperforming if	success when the
	removed for	parents.	project	rescue is to	detected before	interval between
	hand-rearing	Rescue was	implementation	improve survival of	they die.	checks was long,
	or fostered to	attempted in	and outcomes; (2)	nestlings, with at		but smaller
	other wild	2016 (one	timing, e.g. captive	least twice daily		intervals between
	nests)	nestling) and	and wild nests	nest checks (via		checks will equate
		2018 (four	must be initiated	video or manually)		to a substantial
		nestlings) but in	in close synchrony	necessary to		increase in
		all years most	with one another	improve odds of		personnel costs
		candidates for	to be potential	detecting		
	1					

	rescue died	candidates for	underperforming	and potentially
	before they	fostering based on	nestlings before	nest disturbance.
	were found	the timing of	they die. (3)	
	(2016 - six dead	hatching and	Fostering eggs	
	nestlings, 2017 -	fledging dates.	worth considering	
	three dead,	Rescue was highly	as an alternative	
	2018 - sixteen	dependent on the	approach to	
	dead). One	frequency of	nestlings, which	
	successful	monitoring, with	had mixed success.	
	nestling rescued	most ailing		
	in 2018 showed	nestlings dying in		
	a 12.1 g	the four-day nest		
	improvement in	check intervals.		
	mass over 14	Cameras improved		
	days after	monitoring detail		
		but still required		

	fostering to a	personnel to		
	new nest.	manually review		
	Another	video and detect		
	fostered	problems. Logistic		
	nestling	issues with site		
	temporarily	access made		
	gained weight	regular manual		
	but was later	checking		
	feather plucked	challenging.		
	by the host			
	mother and so			
	was taken for			
	hand-rearing.			
	Three nestlings			
	were hand			
	reared, over the			

	project (2016 –		
	1, 2018 – 2) but		
	two were later		
	euthanized.		

94 Discussion

95 Our project provided proof of principal that it is possible to implement intensive, individual level 96 monitoring and intervention to address reproductive problems for the Orange-bellied Parrot. Other 97 projects have applied similar efforts to other species (Jones 2004), but this is the first time these 98 approaches have been attempted for Orange-bellied Parrots. Our results are important because 99 lessons around ways to improve management of threatened species typically go unpublished, and 100 we hope to make 'reinventing the wheel' unnecessary for other projects seeking to deploy similar 101 actions in remote field sites for migratory birds like the Orange-bellied Parrot. We found and report 102 important factors that hindered our ability to achieve project aims, and identified unexpected 103 factors (e.g. potential sensitivity of parrots to deployment of video cameras after nesting has begun) 104 that have important implications for future application of these techniques. Based on the severity of 105 the barriers, benefits and costs of each method, we discuss which elements of the project may be 106 worth incorporating or excluding from future management efforts.

107 Useful components (including caveats): We provide proof of principle that nestling fostering to 108 control brood sizes and correct infertility are methods that could improve reproductive success of 109 the Orange-bellied Parrot. However, intervention by fostering is dependent on having donor captive 110 nests that meet disease screening requirements (i.e. no evidence of BFDV) and logistic and timing 111 constraints in the availability of donors of eggs/nestlings. The presence of disease in the captive 112 population may have compromised the results of fostering in 2016 (Pseudomonas) (Stojanovic, et al. 113 2018), and prevented it altogether in 2018 (BFDV detected in donor parents) (Troy and Kuechler 114 2018). In both of those years, there were opportunities for fostering in the wild due to infertility of 115 eggs, but this was not corrected due to biosecurity precautions.

In the long term, further research to understanding the demographic impact of disease should be a high priority in the Orange-bellied Parrot so that disease mitigation is managed to reduce impacts on other aspects of management. We suggest that nestling fostering may be a useful way to maximize

119 reproductive success of the wild population if disease risk and biosecurity protocols are modified to: 120 (i) address the likelihood of exposure through both vertical and horizontal transmission to eggs and 121 nestlings, (ii) identify methods to mitigate risk while maximizing available management options. 122 Fostering of nestlings was achieved, but further evaluation of whether fostering eggs could improve 123 outcomes is worthwhile (this was not tested in this project). Fostering fertile eggs from captive to 124 wild nests mid incubation may be a more effective method of increasing nest productivity than using 125 nestlings. However further evaluation of biosecurity risks of moving eggs between nests must be 126 evaluated.

127 During this project we developed a body condition index as a way to evaluate nestling condition of 128 Orange-bellied Parrots (Stojanovic, et al. 2020a). This was a useful, empirical way of assessing which 129 nestlings might benefit from intervention and rescue. It also provided a useful means of evaluating 130 the impacts of this intervention. The method is fast and relatively repeatable among observers, and 131 reduced uncertainty about how to identify when a nestling is underperforming. We suggest that 132 nestlings that fall below one standard deviation for first or middle-hatched nestlings (Stojanovic, et 133 al. 2020b) could be considered for intervention/rescue. If such nestlings are identified before they 134 die, and exhibit no symptoms of infectious disease, rescue could be implemented via fostering to 135 other wild nests with small broods (if available). In cases where suitable host nests are not available, 136 rescuing nestlings by hand-rearing them has major limitations (see below).

Video monitoring of nests has the potential to yield large volumes of high-resolution data on the performance of nests and individual animals. However, we suggest that to derive the maximum benefit from this method, personnel should review camera footage daily (preferably twice daily) so that rescue may be undertaken before nestlings die. Because of the 3-5 day intervals between manual checks of videos in our project, recordings mostly served to confirm when and (sometimes) how mortalities occurred. Had more regular checks occurred, some of these mortalities may have been prevented. Video deployment midway through incubation may have caused failure of two

144 nests due to female abandonment. In 2018 (in response to the first abandonment) we deployed 145 dummy cameras in all boxes to habituate parrots to the hardware, but one of the 10 mothers 146 abandoned her nest despite this modified approach. We note though that three other nests 147 (without cameras) were abandoned in that same week, so we are uncertain of the true cause of nest 148 failure. Nevertheless, if the potential risk of nest abandonment from deploying live cameras during 149 incubation is unacceptable, real cameras could be deployed in all boxes before breeding begins. 150 Those boxes eventually occupied by parrots could have the necessary additional hardware for 151 functionality (solar panels and battery) assembled from the ground once nest box occupancy is 152 confirmed, with no disturbance to incubating parrots. This approach is more expensive (because of 153 the need to purchase a real camera for every box), but will greatly reduce the risk of abandonment 154 (because dummy cameras were ignored by all parrots).

155 Components that could be discontinued

156 Unless more frequent manual checking can be achieved without nest disturbance, the rescue 157 component of our project could be discontinued, or implemented opportunistically (e.g. when 158 underperforming nestlings are discovered early and can be fostered to other nests). The logistic, 159 financial and personnel constraints that currently prevent permanent availability of staff at the field 160 site are unlikely to be overcome without substantial new funding. After rescue is completed, hand-161 rearing nestlings is labour intensive if suitable foster nests are not available. In one case during 2018, 162 a nestling that was successfully rescued and fostered to an available wild nest had to be removed 163 along with its foster nest mate because their (captive-born) mother plucked their feathers. This 164 example shows that irrespective of whether suitable host nests are available, careful monitoring of 165 rescued nestlings is crucial to ensure success of the initial intervention. Unless suitably skilled 166 personnel are deployed permanently in the field during the breeding season, even checking intervals 167 of 3 days can be too long to intervene if something goes wrong in a nest. However, if skilled staff are 168 always present, video monitoring and more regular checking may make rescue worth trialing again.

- 169 Consideration should be given to evaluating the cost versus benefit of rescuing a given nestling
- 170 relative to its importance to the population. If the nestling is from a genetically valuable lineage,
- then more intensive interventions (e.g. hand-rearing) may be justifiable, compared to another
- 172 nestling whose lineage may be over represented in the population.
- 173 Conclusion
- 174 Our project tested techniques and tools to provide new approaches for fighting extinction of the
- 175 Orange-bellied Parrot. Our study has yielded important new information about the species ecology
- 176 (Stojanovic, et al. 2018; Stojanovic, et al. 2020b; Stojanovic, et al. 2019) and provided managers with
- 177 new options for data collection and intervention to address reproductive problems facing the
- 178 species. We hope our study provides a useful template for practitioners to trial these techniques and
- 179 evaluate their efficacy on other species.
- 180 Literature Cited
- 181 Bland L. M., Collen B., Orme C. D. L. and Bielby J. (2015) Predicting the conservation status of data-
- 182 deficient species. *Conservation Biology* **29**, 250-259.
- 183 Department of Environment Land Water and Planning (2016) National Recovery Plan for the Orange-
- 184 *bellied Parrot Neophema chrysogaster*. Australian Government, Canberra.
- 185 Doherty T. S. and Ritchie E. G. (2017) Stop Jumping the Gun: A Call for Evidence-Based Invasive
- 186 Predator Management. *Conservation Letters* **10**, 15-22.
- 187 Gerber B. D. and Kendall W. L. (2018) Adaptive management of animal populations with significant
- unknowns and uncertainties: a case study. *Ecological Applications* **28**, 1325-1341.
- 189 Jones C. (2004) Conservation management of endangered birds In: *Bird ecology and conservation*
- eds W. Sutherland, I. Newton and R. Green) Oxford University Press, Oxford.
- Scheele B. C., Legge S., Armstrong D. P., Copley P., Robinson N., Southwell D., Westgate M. J. and
- 192 Lindenmayer D. B. (2018) How to improve threatened species management: An Australian
- 193 perspective. *Journal of Environmental Management* **223**, 668-675.

- 194 Stojanovic D., Alves F., Cook H., Crates R., Heinsohn R., Peters A., Rayner L., Troy S. N. and Webb M.
- 195 H. (2018) Further knowledge and urgent action required to save Orange-bellied Parrots from
- 196 extinction. *Emu Austral Ornithology* **118**, 126-134.
- 197 Stojanovic D., Alves F., Webb M., Troy S., Young C., Rayner L., Crates R., Cook H. and Heinsohn R.
- 198 (2020a) Nestling growth and body condition of critically endangered orange-bellied parrots
- 199 Neophema chrysogaster. *Emu Austral Ornithology*.
- 200 Stojanovic D., Alves F., Webb Matthew H., Troy S., Young C. M., Rayner L., Crates R., Cook H. and
- 201 Heinsohn R. (2020b) Nestling growth and body condition of critically endangered orange-bellied
- 202 parrots Neophema chrysogaster. Emu In Press.
- 203 Stojanovic D., Young C. M. and Troy S. (2019) Efficacy of intervention to relieve nest box competition
- for Orange-bellied Parrot Neophema chrysogaster. *Ecological Management & Restoration* **21**, 66-68.
- 205 Troy S. and Hehn K. (2019) Report on the Melaleuca wild population 2018/19. In: Tasmanian
- 206 Orange-bellied Parrot Program, Tasmanian Department of Primary Industries, Parks, Water and the
- 207 Environment.
- Troy S. and Kuechler A. (2018) Report on the Tasmanian Wild Population 2017/18. In: Department
- 209 of Primary Industries, Parks, Water and Environment.
- 210 Walls S. C. (2018) Coping With Constraints: Achieving Effective Conservation With Limited Resources.
- 211 Frontiers in Ecology and Evolution **6**.
- 212 Wintle B. A., Runge M. C. and Bekessy S. A. (2010) Allocating monitoring effort in the face of
- 213 unknown unknowns. *Ecology Letters* **13**, 1325-1337.
- 214