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Globally, wildlife managers often control predator populations to protect biodiversity, 20 

livestock or other valued resources. Most assume that the predation impact of each 21 

individual predator is the same and that removing any individual predator produces a 22 

benefit to the target species. However, research suggests predation efficacy can vary within 23 

a predator species according to phenotypic characteristics. Understanding these individual 24 

differences may be critical for managing predation impacts on particular categories of prey 25 

including small populations where predation effects are amplified.  We used dietary data 26 

from 1748 feral cats euthanased over 30 years during a control program in arid Australia to 27 

determine whether any predator attributes could predict their effect on different prey 28 

weight classes.  29 

Feral cats in our study ate a wide range of prey including reptiles, mammals, birds and 30 

invertebrates. Demography (body mass) was a highly significant predictor of diet. Cats 31 

weighing 3 kg fed predominantly on prey < 50g increasing to > 500g when cats attained a 32 

body mass of 6 kg. Of more significance was that diet varied between demographic groups 33 

but also within a single demographic group (adult males) based on body mass, with results 34 

having significant implications for threatened prey. Modelling indicated that for a fixed 35 

predator population size, the predation rate on prey in a >500g weight class increased by 36 

28% when the ratio of large (>4.2 kg) to small adult males varied according to its natural 37 

range (12-80% over the 30 year study). Results suggest that variations in predator 38 

demography can significantly impact predation rates on prey species and should be included 39 

in predator–prey models for small prey populations. On average, large male cats comprised 40 

23% of the population and our findings suggest that targeting the “lethal demographic” and 41 

manipulating predator demography should be prioritised along with lowering predator 42 

density to reduce predation impacts. 43 
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 44 

Introduction 45 

Introduced predators have caused the decline and extinction of hundreds of native species 46 

around the world. They have decimated native mammal populations in Australia (Burbidge 47 

and McKenzie 1989; Woinarski et al. 2012) and native birds in New Zealand, Japan, the 48 

United States and on islands (Arcilla et al. 2015, Young et al. 2013, Nogales et al. 2013). 49 

Furthermore, introduced predators have caused the failure of numerous global 50 

reintroduction programs through high levels of predation (Moseby et al. 2011; Clayton et al. 51 

2014; Armstrong et al. 2006). Introduced predators are thought to exert a greater impact on 52 

prey than native predators due to the absence of shared evolutionary history (Saul & 53 

Jeschke 2015).  54 

 55 

Introduced predators also have an impact on agriculture through predation on livestock 56 

(Greentree et al. 2000; McLeod et al. 2010).  Due to the threats posed by introduced 57 

predators, their control is a common management action implemented for the protection of 58 

threatened species and livestock around the world (Courchamp et al. 2003; Burrows et al. 59 

2003; Whitehead et al. 2010).  The cost of these control programs can be high, for example 60 

Australia spends approximately 16 million dollars a year on the control of foxes for the 61 

protection of wildlife and domestic stock (McLeod 2004). Reducing the abundance of 62 

predators is the goal of most programs based on the assumption that predator abundance is 63 

the most important determinant of predation risk. This assumption is underpinned by the 64 

conceptual model of predator-prey dynamics stemming from the Lotka-Voltera model 65 

(Voltera 1926; Lotka 1932) that explains changes in prey abundance based on predator 66 
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abundance. A well-known example is the lynx-hare relationship where lynx populations 67 

increase and decrease in synchrony but slightly lagging behind fluctuations in abundance of 68 

snow-shoe hares (Keith et al. 1984). Hollings (1966) expanded predator-prey theory by 69 

adding a functional response, arguing that the rate at which predators consume prey is a 70 

function of their attack rate and processing time, which varies at different prey densities. 71 

However, predator-prey models are based on assumptions, e.g. that the predator is 72 

dependent on a single prey species, that the predator has a limitless appetite, and that a 73 

fixed proportion of encounters leads to the death of the prey. These assumptions are rarely 74 

met in the wild, impeding application of these models in conservation (Abrams 2007).  75 

 76 

Importantly, most predator management programs and models of predator-prey dynamics 77 

assume that each predator in the population has equivalent hunting efficacy (e.g. the 78 

constant in Lotka’s predator consumption rate or Hollings’ predator attack rate). In the case 79 

of vertebrates, this assumption is often violated because differences in the genetic make-80 

up, demography and life-time experience of predators influences individual’s hunting 81 

behaviour (McGregor et al 2014; Dickman & Newsome 2015; Moseby et al. 2015; Pettorelli 82 

et al. 2015). For example, Austin et al. (2004) found significant intraspecific differences in 83 

foraging behaviour in seals with likely resultant effects on predation models. In feral cats, 84 

some individuals can learn to hunt vulnerable prey, leading to accelerated killings and 85 

sometimes local extinction (Clout and Craig 1995; Moseby et al. 2015; Hardman et al. 2016).  86 

Within small populations, such as threatened or reintroduced wildlife, predation effects are 87 

amplified (Saul & Jeschke 2015) and intraspecific differences in predator attack rate or 88 

preferred prey have the potential to drive catastrophic population declines. Thus, assuming 89 
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that all predators exert similar impacts on prey has the potential to incorrectly inform 90 

management approaches (Pettorelli et al. 2015).  91 

 92 

Some researchers have incorporated changes in predation rate into their models when 93 

assessing predator impacts, for example, Nilson et al. (2005) incorporated the variation in 94 

predation risk of young vs adult moose in predator-prey models of wolf impacts.  However, 95 

those studies that do focus on the variation in prey selection of predators tend to focus on 96 

population changes such as seasonal (Davidson et al. 2013) or temporal changes in predator 97 

diet or changes due to habitat structure (Hebblewhite et al. 2005), pack size (Packer et al. 98 

1990, Loveridge et al. 2006) or prey breeding season (Davidson et al. 2013). Unfortunately, 99 

the influence of individual predator traits on predation impacts has received less focus (but 100 

see Funston & Mille 2006), despite studies reporting intraspecific differences in predation 101 

impacts related to predator sex (Marlow et al. 2015), age (Litvaitis et al., 1986), experience 102 

(Estes et al. 2003) and body size (Moseby et al. 2015; Kutt 2012).  Feline predators are 103 

particularly flexible, exploitative and opportunistic, Cheetahs (Acinonyx jubatus) vary in prey 104 

selection based on sex (Cooper et al. 2007), Lynx (Lynx lynx) on reproductive status (Pierce 105 

et al. 2000), Cougars (Puma concolor) on age (Ross et al. 1997) and domestic cats (Felis 106 

catus) on sex and body size (Kutt 2011; Moseby et al. 2015).  Individual felines can also 107 

specialise on certain prey based on individual experience and learn to hunt difficult prey 108 

(Knopff & Boyce 2007; Dickman & Newsome 2015; Moseby et al. 2015).    109 

 110 

Feral cats are an introduced species in Australia and predation by feral cats is listed as a Key 111 

Threatening Process for more than 100 fauna species under the Commonwealth 112 

Environment Protection and Biodiversity Conservation Act (1999). Most of these threatened 113 
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prey weigh between 35g and several kilograms.  We used data from 1748 feral cats 114 

euthanased over 30 years during a predator control program in arid Australia to determine 115 

whether any predator attributes could predict their predation rate on fauna.  We first 116 

determined whether the composition and diversity of feral cat diet varied amongst 117 

demographic groups and how this related to prey abundance and environmental variables. 118 

Secondly, we modelled the effects of different demographic ratios on the predation rates on 119 

populations of mammals >500g. This prey size is typical of many mammal species known to 120 

be threatened by feral cats and which have been subjected to high rates of decline and 121 

extinction in the study area (Moseby et al. 2011; Woinarski et al. 2012).  We compared the 122 

potential impacts of various demographic combinations and used the results to determine if 123 

predation impacts can vary significantly even when predator and prey density remain 124 

constant.  125 

 126 

Methods 127 

Study area 128 

This study was conducted in the vicinity of the Arid Recovery Reserve in the Roxby Downs 129 

region of northern South Australia (30 29’S, 136 53’E). The area is comprised of arid 130 

shrubland supporting longitudinal sand dunes overlying clay interdunal swales. The climate 131 

is arid with erratic annual rainfall averaging 166 mm (www.BOM.gov.au).  The area supports 132 

multiple land uses including cattle grazing, mining and conservation. Feral cats are 133 

widespread throughout the region (Read and Bowen 2001) and live wild and independent of 134 

human contact (Moseby et al. 2009a).  135 

Cat diet samples 136 
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Between January 1990 and January 2020, feral cats were removed from a 960,000 ha area in 137 

the Roxby Downs region through shooting, cage trapping and padded leghold trapping. Cats 138 

were removed principally as part of a local control program to reduce the pressure around 139 

the Arid Recovery Reserve (Moseby et al. 2011), but also as part of feral control on pastoral 140 

properties and around a mine. 141 

 142 

For this analysis, we focused on feral cats, defined as those collected at least 3km from 143 

refuse dumps, residential or industrial areas. Cats were weighed, sexed and then dissected 144 

to examine stomach contents and to determine reproductive status of females. The lightest 145 

pregnant female cat was 2.3 kg, which was adopted as the minimum weight of both sexes at 146 

sexual maturity. This was slightly lower than the defined adult body mass of 2.5 kg recorded 147 

in other studies (Jones & Coman 1982; Brothers et. al. 1985). The coat colour of cats was 148 

recorded as either tabby, ginger, or black. Body condition was not included due to 149 

inconsistencies with field scoring methods. Stomach contents were examined for prey items 150 

and where possible each item was identified to species level. Invertebrate species were 151 

identified to Order. A comprehensive 20 year inventory of prey species from the local area 152 

was used as a guide (Read 1998; Read et al. 2000; Read & Cunningham 2010; Moseby et al. 153 

2009b). 154 

 155 

Cat and Rabbit density 156 

The density of feral cats and one of their key prey items, the European rabbit (Orytolagus 157 

cuniculus) was estimated using two 20km spotlight transects conducted in the study area 158 

every two months from April 1989 until 2013 and then less frequently for the duration of 159 

the study (see Read and Bowen 2001 for methods). Results were averaged across quarters 160 
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and if no transects were conducted within a quarter, then the previous quarter’s estimate 161 

was used.  162 

Variables influencing Diet  163 

We divided prey into six prey groups; invertebrates, birds, herpetofauna (reptiles and frogs), 164 

rabbits, small mammals (<20g) and rodents 20 – 60g (comprising the spinifex hopping 165 

mouse (Notomys alexis) and nationally threatened plains mouse (Pseudomys australis)). 166 

Carrion was not considered as it was recorded in <2% of samples. We used a count of each 167 

prey group per stomach, with the exception of rabbits and birds which were considered as 168 

binary variables (present/absent) as they were almost exclusively recorded as single prey 169 

items.  170 

First, we explored data for simple relationships between cat weight and prey size. The 171 

average live weight of each prey species was derived from trapping and shooting studies at 172 

the study site (Read 1998; Read 1999; Read & Cunningham 2010; Moseby et al. 2009b). We 173 

then averaged the live weight of all the prey items found within each cat stomach, then ran 174 

a Generalised Linear Model (R, v3.5.1, www.r-project.org) with a negative binomial 175 

distribution against cat weight, and compared this to a null model using an information 176 

theory framework ie we considered a model with an Akaike weight > 0.5 and delta AICc > 4 177 

having relatively better support compared to the null models (Burnham and Anderson 178 

1998). r  179 

Next, for each prey group, we compared their abundance in each cat’s stomach with a range 180 

of individual cat characteristics and extrinsic variables. For prey categories using count data 181 

we used two-stage hurdle generalised linear models (Potts and Elith 2006;  Zuur et al. 2009), 182 

as data were over-dispersed and contained many zeros. These two-stage models ran a 183 

http://www.r-project.org/
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binary logit model in tandem with a truncated negative binomial model fitted only to counts 184 

greater than 0. The former models the probability of eating a prey species, the latter models 185 

the probability of how many are eaten. For rabbits and birds (binary variables), we applied 186 

generalised linear models with a binomial distribution.  187 

The explanatory variables used in each prey group model of cat diet included cat weight 188 

(both a linear and parabolic relationship peaking at 3 kg used in separate models), sex, 189 

pelage (ginger, tabby, black), rainfall recorded in the last 12 months, either maximum 190 

nightly temperature (for birds and herpetofauna only, as this would affect activity) or 191 

maximum temperature averaged over each month (as more representative of climatic 192 

conditions), and method of sampling (shot or trapped). Rainfall and temperature data were 193 

sourced from the Bureau of Meteorology (www.BOM.gov.au) from the closest registered 194 

recording location (Olympic Dam Aerodrome, within 80 km of each sample). Rabbit density 195 

was also included in the models and abundance of medium sized rodents (20-60g) was 196 

included as a categorical variable on a scale of 0-5 (0=absent, 5=highest abundance).  This 197 

index was used instead of trapping rates as sampling was not consistent between habitats 198 

and time periods. Capture rates of rodents in the weight range 20-60g fluctuated from 0 to 199 

10%, and were allocated scores ranging from 1-5 (Read 1994; Moseby & Read 2001; Moseby 200 

et al. 2009; Arid Recovery unpublished data).  201 

As prey consumption of certain groups could be affected by dietary preference, we also 202 

added a variable ‘preferred food’ into the model. This variable quantified the number of 203 

prey items present in each cat’s stomach that were from a more preferred prey group. We 204 

ranked prey groups based on preferences found in existing literature (Paltridge et al. 1997, 205 

2002; Pavey et al. 2008; Spencer et al. 2014; Read et al. 2019; Kutt 2012), then for each prey 206 

http://www.bom.gov.au/
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group we added the number of all of the more preferred prey items in each cat stomach as 207 

a variable. We ranked preferred prey highest to lowest; rodents 20 – 60g; rabbits, small 208 

mammals (<20g), birds, herpetofauna, then invertebrates.  209 

 210 

For the prey models using bird and rabbit prey groups, we included an interaction term 211 

between cat weight and average monthly temperature, as birds and rabbits are most likely 212 

to have young from Winter to Spring (Read et al. 2000; Bowen & Read 1998) which could be 213 

targeted by smaller cats. 214 

For each of the six prey groups, we ran independent analyses to determine the best model 215 

for predicting their presence or count in cat stomachs using information theory, based on 216 

Akaike Information Criterion (AIC) weights. We used AIC instead of AICc, as our sample size 217 

divided by candidate variables was always greater than 200 (Burham & Anderson 1998). As 218 

we considered all variables possible important predictors of cat diet, we ran 12 models with 219 

different combinations of biologically plausible variables, where each variable was present 220 

within 4-6 models. A global and null model was also added to each model set. The sampling 221 

method (trapped vs shot) was included in all models bar the null, as trapped cats were less 222 

likely to have eaten in the previous 12 hours than shot cats. We then looked at model 223 

averaged coefficients, and added another model containing only variables with > 73% 224 

relative importance, suggesting an AIC delta difference of 2 or less (Richards 2005). For each 225 

analysis, we considered the model with the most support to be the model with a delta of 0 if 226 

>2 difference. 227 

Once we had selected the models with the most support, we investigated model fit and 228 

predictive power using quartile-residual plots for all models, rootograms for zero-inflated 229 
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hurdle models (Kleiber & Zeileis 2016) and receiver operator curves for the Area Under 230 

Curves (AUC) for binomial models.  231 

The influence of demography on kill rates of different prey groups 232 

We tested whether the proportion of large males in the population would change predation 233 

pressure on the rabbit prey category at a population level, when all other variables were 234 

taken into consideration. The topprey group models were used to simulate the stomach 235 

contents of 100 random cats each day for 365 days given a range of realistic demographic 236 

and environmental variables. We used an input of temperatures based on long term daily 237 

averages obtained from the study area and we simulated an entire year. We used a 238 

demographic ratio of male:female:subadult of 2:2:1 based on the long term average from 239 

shot cats in the study area and yearly rainfall was taken from a normal distribution from the 240 

site. The index of rodents 20-60g was a uniformly drawn random number between 1 and 5. 241 

As some prey group outcomes are influenced by others, we included any of our significant 242 

prey preference hierarchies in the models. We assumed each stomach content would 243 

represent 10 hours of hunting; the time taken for 95% of small and large food items to 244 

transit the stomach of owned cats (Chandler et al. 1997).  245 

We reran the model simulation 100 times using different ratios of adult males that were 246 

either small (the first and second quartile of adult male’s cat body mass in the population, 247 

2.3-4.2 kg) or large (third and fourth quartile 4.3 kg-6 kg). Female weight ratios were not 248 

included due to the small proportion of females weighing over 4.2kg. In every model, we 249 

assumed the same feral cat population size and that rabbit density was moderate and stable 250 

(40 km-2, the average from 2009-2019). We then ran a generalised linear model where each 251 
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datapoint was one of the 100 simulations of the relationship between large:small male 252 

ratio, and predicted annual rabbit kill.  253 

To investigate whether the percentage of large adult male cats in a population was related 254 

to density, for each year we summed cat density and portion of large adult males in the 255 

sampled population and ran Generalised Linear Model (R, v3.5.1, www.r-project.org) 256 

comparing large males against estimated cat density, then compared this to a null model 257 

using an information theory framework ie we considered a model with an Akaike weight > 258 

0.5 and delta AICc > 4 as having relatively stronger support compared to the null models 259 

(Burnham and Anderson 1998).  260 

Results   261 

There were 3025 recorded cats euthanased in the study region between January 1990 and 262 

January 2020. Of those, 1748 were caught away from human habitation and had a full suite 263 

of demographic and stomach data. For these cats, 1288 were shot and 460 were trapped in 264 

leghold (>95%) or cage traps. Adult female cats (average weight=3.33, SE=0.02) were 265 

typically smaller than adult male cats (average weight=4.19, SE=0.03, Fig 1). The 266 

demographic ratio averaged across all years between male:female:subadult was 2.6 : 2.4 : 1, 267 

but ranged from 15 : 13 : 1 to 1.1 : 0.8 : 1. For adult male cats the percentage of large cats in 268 

the population each year varied from 12% to 80% (average= 45%). Demography varied 269 

independently of density, as a model of cat density against the percentage of large adult 270 

male cats had less support than a null model (AICc of model compared to null: loglik 26.7 vs 271 

26.6, AICc -46.5 vs -48.6, delta 2.3 vs 0, weight =0.2 vs 0.8).  272 

Diet vs demography 273 

http://www.r-project.org/
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There were 75 different vertebrate species recorded in the diet, and 12 invertebrate 274 

families. When the size of cats was compared with their stomach contents, subadult cats 275 

less than 2.3 kg predominantly ate food items less than 10g in weight such as invertebrates, 276 

small mammals and reptiles, but as cats increased in size, so too did their intake of larger 277 

food sources (Fig. 2). Once cats attained a body mass of more than 4 kg their average weight 278 

of dietary items increased markedly (Fig.2). Larger cats over 5.5 kg predominantly ate prey 279 

greater than 500g, especially rabbits. The average weight of all prey species in a cat’s 280 

stomach increased on a log scale with cat weight (Fig 3, AIC of model compared to null: 281 

loglik -3412 vs 3513, delta 0 vs 200, weight =1 vs 0). Dietary diversity within stomachs of 282 

each cat size declined with cat weight (AIC of model compared to null: loglik -2790 vs 5584, 283 

delta 0 vs 9, weight =0.99 vs 0.1), with stomachs from larger cats containing fewer dietary 284 

categories than smaller cats (-0.05/kg, z=3.3, P<0.001).  285 

When models were run comparing stomach contents with individual cat attributes and 286 

environmental variables, methodological and environmental variables were prominent in 287 

nearly all top ranking models (Table 1). For each prey category, the most parsimonious 288 

model was selected with a substantial margin over other candidate models (Akaike weight > 289 

0.95, and delta > 2 of next strongest model, see Suppl Material 1). Most variables within 290 

each model had a high relative importance (>0.95) and were significant, except for certain 291 

interaction terms. All hurdle models had stable rootograms and QQ plots (see Suppl 292 

Material 2), all binomial models had strong predictive power (rabbit AUC = 0.79, birds = 293 

0.62).   294 

Cats that were trapped were around 50% less likely to have prey present for all groups than 295 

shot cats. In hotter temperatures, cats ate fewer rabbit and birds, yet more small mammals, 296 
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herpetofauna and invertebrates (Table 1). We found no difference in diet between cats of 297 

different pelage colouration. Interestingly, for a given weight class, female cats were slightly 298 

more likely to eat rabbits than males. If cats had already eaten more preferred prey, they 299 

were less likely to eat rabbit or small mammals, however, no relationship was found for 300 

birds and herpetofauna, and a positive association with invertebrates (Table 1).  301 

Cat weight was of high relative importance in the highest ranking models for all prey groups 302 

except birds. Rabbits became more prevalent in stomachs of cats of larger sizes (Fig. 4), with 303 

an interaction with average monthly maximum temperature (Table 1). Smaller cats were 304 

more likely to eat rabbit during cooler months (Fig. 5) whereas larger cats ate rabbits 305 

regardless of temperature. Invertebrates and herpetofauna were predominantly eaten by 306 

smaller cats, whilst rodents 20-60g displayed an approximately parabolic relationship (Fig. 307 

4).   308 

Using models to predict rabbit kill rates under different demographics 309 

There was a strong significant relationship between the ratio of large to small adult male 310 

cats and rabbit consumption compared to the null model (loglik = -895.7 vs -906.7, delta = 0 311 

vs 20, weight = 1 vs 0, coef=34, se=7, R2 = 0.19 F = 24.3 1 on 98 DF, P < 0.001***). The 312 

greater the ratio of large to small male cats in the population the higher the predation 313 

impact would be on rabbits (Fig.6).  For a random population of 100 cats, every 10% 314 

increase in the proportion of the male population over 4.2g would result in an additional 315 

340 extra rabbits per year being killed. The actual proportion of large to small adult cats 316 

varied from 13 to 80% over the study period.  317 

  318 
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 319 

Discussion 320 

 321 

The significant influence of cat body mass on predation of different prey groups suggests 322 

that individuals within a population can disproportionately affect prey populations. This 323 

result has implications for managing the undesired impacts of  predators including high 324 

predation rates of introduced predators on threatened species. The recorded ratios of large 325 

to small adult male cats over our 30 year study ranged from 13% to 80% demonstrating that 326 

demographic ratios vary significantly in the wild even within demographic groups. We found 327 

that for a predator and prey population of a fixed size, the predation rate on prey >500g 328 

increased by 28% when comparing the lowest and highest ratios recorded during our study. 329 

Our results support other studies that have found differences in predation rates based on 330 

body size both within a species (see Pettorelli et al. 2015 for review, Kutt 2012) and 331 

between species (Carbone et al. 1999; Vezina 1985). However, our results contrast with the 332 

results of a more limited study by Yip et al. (2014) who found no relationship between the 333 

types of prey consumed and cat size.  334 

Results suggest that targeted control of individual predators within certain demographic 335 

groups may significantly improve management outcomes depending on the size of prey 336 

being protected. When modelling the impacts of predators on threatened or small prey 337 

populations, the proportion of predators in each adult size category may need to be 338 

explicitly included in predator prey models. Unfortunately, most predator prey models use 339 

population means and consider predators to be identical individuals (e.g. Fryxell et al. 2007; 340 

Nilsen et al. 2005; Post et al. 1999; Stenseth et al. 1997; Vucetich et al. 2005, 2011).  Some 341 
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researchers have included sex or age class in predator prey models to improve their 342 

predictive power e.g. Nilsen et al. (2007) but in general, individual traits are rarely 343 

considered (Pettorelli et al. 2011).   This can have significant implications for developing 344 

appropriate management strategies for threatened prey populations where intraspecific 345 

differences in hunting behaviour are likely to have amplified effects.  346 

 347 

Our study is significant as, whilst previous studies have shown differences in predation rates 348 

between sub-adults and adults within a population, we have shown that even changes 349 

within a single demographic group (adult male cats) are likely to affect predation rates.  350 

Although this has implications for the control of introduced predators for the protection of 351 

threatened species, our results have broader implications including for practitioners 352 

protecting native prey or livestock from native or exotic predators. Understanding how 353 

predation rates change with demography can assist managers with developing more 354 

targeted control methods, improving cost effectiveness and efficacy. In our study, prey 355 

weighing over 500g were more likely to be eaten by cats over 4.2 kg in body mass. The 356 

proportion of cats in this size category averaged 23% of the population each year but ranged 357 

from 7% to 45% over the 30 year study period. This lethal 23% is supported by other field 358 

studies that have shown male (Marlow et al. 2015), large 4 kg males (Moseby et al. 2015) or 359 

individual cats (Hardman et al. 2016) can have catastrophic impacts on threatened species 360 

populations. Targeting this ‘lethal demographic’ would increase the efficacy of predator 361 

control for protection of threatened species that have a body mass of more than 500 g and 362 

may explain why some control programs that record a decline in predator density are 363 

unable to demonstrate a resultant increase in threatened species abundance (Walsh et al. 364 

2012).  365 
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 366 

Studies have recorded feral cats preying on species as large as 220-280g (Dickman 1996; Yip 367 

et al. 2014), up to their own body weight (Paltridge et al. 1997) and consuming mammals 368 

weighing 1.6 kg (Marlow et al. 2015), 2 kg (Moseby et al. 2015; Hardman et al. 2016) and 369 

even 4 kg (Read et al. 2019).  Our finding suggests that the preferred prey weight of 40g or 370 

less determined by Pearre and Maass (1998) for Felis catus globally is too simplistic and that 371 

feral cats may be a significant threat to species up to several kilograms in body mass.  372 

The interacting effects of cat size, prey availability, prey preferences, rainfall and season on 373 

cat diet supports other studies that suggests predation impacts are complex and depend on 374 

a range of intrinsic and extrinsic factors (Pettorelli et al. 2011). Some studies have found 375 

that larger predator species consume a higher diversity of prey than smaller ones (Radloff 376 

and du Toit 2004; Schoener 1969). This relationship has also been demonstrated within the 377 

same species (Yip et al. 2014) which, in sexually dimorphic species, is thought to be a 378 

response to the higher protein requirements of larger males (Nagy 1987). However, we 379 

found large cats to have lower diversity diets. Part of this reduction in diversity may be an 380 

artefact caused by the local extinction of many mammals >100g from the study area 381 

(Moseby et al. 2011) limiting the availability of larger prey.  However, reptiles weighing up 382 

to 450 g were included in the diet of cats and were present in the study area (Read 1994). 383 

Single prey species are thought to only form the bulk of the diet of individual cats that have 384 

developed specialist hunting methods (Dickman 2009 but see Dickman and Newsome 2015) 385 

or where prey are very abundant and easy to hunt (Fitzgerald and Turner 2000; Yip et al. 386 

2014; Denny and Dickman 2010). However, our results suggest that specialisation may occur 387 

when cats attain a body size where they can improve their hunting efficiency by selecting 388 



18 
 

and targeting larger prey, rendering these cats particularly destructive in wildlife protection 389 

programs. 390 

 391 

Sex is another phenotypic characteristic that has been shown to affect individual predation 392 

rates in weasels (Mustela nivalis) (Sundell, 2003), Cheetahs (Acinonyx jubatus) (Cooper et al. 393 

2007) and wolf spiders (Pardosa vancouveri) (Hardman & Turnbull 1974).  However, sex only 394 

weakly influenced rabbit consumption when body mass was held constant. Breeding female 395 

cats may be targeting young rabbits which emerge most often in Winter and Spring (Bowen 396 

& Read 1998). Juvenile rabbits may be easier for smaller non-breeding female cats and/or 397 

younger inexperienced cats to hunt. This is supported by the highly significant interaction 398 

between weight and temperature for rabbit consumption with smaller cats feeding on 399 

rabbits in the cooler months and larger cats feeding on rabbits regardless of temperature.  400 

Although male cats generally attain a larger body mass than females it appears to be size 401 

rather than sex per se that drives differences in prey consumption.  Studies that have found 402 

male cats to specialise on threatened prey species and cause significant predation impacts 403 

(Marlow et al. 2015) are likely recording a size rather than a sex effect (Moseby et al. 2015).  404 

However, the influence of body size could not be effectively separated from age. Heavier 405 

cats are likely to be older but the absence of a reliable ageing mechanism for feral cats 406 

makes it difficult to separate out the two demographic effects. Age is an important 407 

determinant of predation rate in other feline species but usually these studies compare 408 

subadult with adult animals (Litvaitis et al. 1986; Knopff et al. 2010). We considered 409 

subadults separately from adult cats in an attempt to separate age from size effects and, 410 

like other felid studies, found young cats more likely to consume invertebrate and smaller 411 
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prey items than adult cats. However, whether this result is simply due to smaller body size 412 

or is in fact related to age effects such as lack of experience or shyness is unknown.   413 

 414 

The presence of 20-60g rodents at a site may provide some protection for other mammals. 415 

Small mammal and rabbit presence in cat stomachs were lower if 20-60g rodents were 416 

present, suggesting that when rodent abundance is high, cats will preferentially eat rodents. 417 

This protection may be most pronounced during wet years as higher rainfall in the previous 418 

12 months increased the incidence of 20-60g rodents in the diet probably due to rainfall-419 

induced resource pulses leading to localised rodent population booms (Brandle & Moseby 420 

1999; Letnic et al. 2005).  Alternatively, this protection may be unsustainable: when rodent 421 

numbers crash during droughts, cats may prey switch to other fauna (Courchamp et al 2000; 422 

Read and Bowen 2001). 423 

Our findings have significant implications for conservation of small populations of 424 

threatened species where predation is a major threat. Controlling the “lethal demographic” 425 

is likely to be just as important as reducing the density of introduced predators per se. 426 

Predator control methods that remove large cats over 4 kg are likely to yield significantly 427 

greater conservation benefits to prey weighing more than 500g than removing random cats 428 

from the population. When reintroducing or protecting threatened species of this size, 429 

practitioners could target cats that prey on these species through the use of toxic implants 430 

in prey species (Read et al. 2015), audio lures that include female mating calls and olfactory 431 

lures that are attractive to male cats. Control methods that are likely to target small cats, 432 

young cats or inexperienced hunters, such as cage traps and control methods that use food 433 

based lures (Short et al. 2002), should be used sparingly.  434 
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 435 

Our results reveal that accounting for individual variability in predation impacts may help 436 

resolve the discrepancy between patterns predicted in theoretical versus wild populations 437 

and provide more accurate models for predicting predation impacts on threatened prey 438 

populations. We urge global conservation managers and researchers to measure individual 439 

differences in predation rates of threatened prey by other predator species and incorporate 440 

this knowledge into prioritising on ground management actions that target predators with 441 

‘lethal demographics’.  442 
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 754 

Table 1. Details of variables within models with the strongest support for each prey group 755 

predicted within cat stomachs. ‘Type’ refers to type of model. If modelling a count, two-756 

stage hurdle models were used with a zero and count, while binary models used a binomial 757 

‘GLMuhi’. The variable pelage was also modelled, but not present in any top ranked model. 758 

Prey category  Variable details 
AIC relative 

importance 

Model 

averaged 

coefficient 

 

 

SE 

 

 

Z P 

Rodents 20-60g Zero Intercept  -3.46 0.21 16.33 <0.001 

  

Sample method- trapped 0.95 -0.37 0.15 -2.45 0.014 

  

Cat weight (parabolic) 1 -0.61 0.11 -5.41 <0.001 

  

Rodent abundance index (0-5) 1 0.87 0.05 16.05 <0.001 

 

count Intercept  -0.73 0.34 -2.14 0.032 

  

Abundance index (0-5) 1 0.23 0.07 3.42 <0.001 

  

Sample method- trapped 0.95 -0.45 0.18 -2.53 0.011 

Rabbits binomial Intercept  1.35 0.92 1.48 0.14 

 
 Sample method- trapped 1 -0.64 0.14 -4.45 <0.001 

 
 Preferred food  1 -0.56 0.12 -4.78 <0.001 

  

Cat weight (linear) 0.95 -0.06 0.23 -0.26 0.792 

 
 Average month temp. (°C) 1 -0.11 0.03 -3.74 <0.001 

 
 Rabbit density 1 0.45 0.21 2.2 0.028 

 
 Rainfall in last 12 months 0.97 -0.37 0.1 -3.74 <0.001 

 
 Sex- Male 0.95 -0.23 0.13 -1.73 0.084 

 

  Weight (linear) × av. month temp. (°C)   0.97 0.02 0.01 2.57 0.01 

Small mammals Zero Intercept  -1.68 0.4 -4.16 <0.001 
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Sample method- trapped 1 -0.87 0.14 -6.18 <0.001 

  

Rain in last 12 months 1 0.47 0.09 5.48 <0.001 

  

Cat weight (linear) 1 -0.15 0.05 -3.23 0.001 

  

Preferred food  0.97 -0.15 0.06 -2.58 0.01 

  

Average month temp. (°C) 0.95 0.02 0.01 2.63 0.009 

 

Count Intercept 0.95 -2.66 2.44 -1.09 0.277 

  

Rain in last 12 months 0.95 0.29 0.13 2.23 0.026 

Birds Binomial Intercept  -0.64 0.37 -1.72 0.085 

  

Sample method -trapped 1 -0.9 0.24 -3.69 <0.001 

  

Average monthly temp. (°C) 1 -0.05 0.01 -4.09 <0.001 

Herpetofauna Zero Intercept  -1.7 0.32 -5.37 <0.001 

  

Sample method-trapped 1 -1.43 0.17 -8.36 <0.001 

  

Maximum daily temperature 1 0.04 0.01 5.58 <0.001 

  

Cat weight (linear) 1 -0.12 0.05 -2.51 0.012 

 

Count Intercept  -8.8 52.57 -0.17 0.867 

  

Sample method- trapped 1 -1.03 0.35 -2.98 0.003 

Invertebrates Zero Intercept 1 -2.81 0.49 -5.78 <0.001 

  

Sample method- trapped 1 -0.51 0.16 -3.19 0.001 

  

Cat weight (linear) 1 -0.36 0.06 -6.43 <0.001 

  

Rain in last 12 months 1 -0.22 0.1 -2.11 0.035 

  

Preferred food 1 0.14 0.03 5.05 <0.001 

  

Average month temp. (°C) 1 0.09 0.01 8.52 <0.001 

 

Count Intercept  -8.72 53.01 -0.16 0.869 

  

Sample method- trapped 1 -1 0.28 -3.55 <0.001 

  

Cat weight (linear) 1 -0.44 0.1 -4.38 <0.001 

    Preferred food 1 0.11 0.06 1.97 0.049 

 759 

 760 
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 761 

 762 

 763 

Fig 1. Histogram of the spread of weights of adult female and male cats sampled during the 764 

study. 765 

 766 
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 767 

Figure 2. Distribution of prey size found inside cat stomachs for cats in each cat weight class.  768 

 769 

Figure 3: Model predictions of the relationship between cat weight and average weight of all 770 

prey species found in each stomach, including 95% confidence interval (grey shading). 771 
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 772 

Figure 4: Predicted relationships between cat weight and prey categories found in cat 773 

stomachs from models with the strongest support for the five prey categories; rodents 20-774 

60g (dots), rabbits (solid black), small mammals <20g (black dash), herpetofauna (solid grey) 775 

and invertebrates (grey dash). All other variables were set as constant.   776 

 777 

 778 

  779 

 780 
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 781 

Figure 5: The probability of a cat stomach containing rabbit in relation to cat weight during 782 

the hottest months (pale grey) and coldest months (dark grey) at the study site. 783 
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 784 

Figure 6. Estimated annual kill rate of rabbits in 100 simulated populations of feral cats, 785 

comparing scenarios with varying percentage of the male feral cats >4.2 kg. Constants in all 786 

scenarios is cat population size (100 cats), a 2:2:1 ratio of male:female:subadult and rabbit 787 

density of 40km-2. The variables of rainfall, temperature and number of rodents 20-60g 788 

were drawn from a random sample according to real patterns around the study area. Blue 789 

tick marks indicate natural spread of the percentage of males >4.2 kg sampled from the 790 

study area in the years between 1990 and 2019. 791 

 792 

 793 

  794 
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Supplementary Material 1. Results from model selection tables comparing variables 795 

affecting prey groups in cat stomachs, using AIC values (see Table 1). Only the top model, 796 

second best model, global model and null model are presented for brevity. 797 

Prey 

Group Model details df LogLik AIC Delta Weight 

Rodents 20-60g 

     

 

Top model 8 -1067 2150.1 0 0.78 

 

Second model 

(global) 12 -1064.5 2153.2 3.1 0.16 

 

Null 3 -1264.5 2534.9 384.8 0 

Rabbits 

      

 

Top model 9 -903.4 1825 0 0.81 

 

Second model 

(global) 11 -903.1 1828.3 3.3 0.15 

 

Null 1 -1046.3 2094.6 269.6 0 

Small mammals 

     

 

Top model 9 -1633.4 3284.8 0 0.75 

 

Second model 

(global) 12 -1631.5 3287.3 2.4 0.22 

 

Null 3 -1685.9 3377.9 93.1 0 

Birds 

      

 

Top model 3 -500.3 1006.6 0 0.46 

 

Second model 7 -497.6 1009.2 2.5 0.13 
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global model 10 -496.1 1012.4 5.7 0.03 

 

Null 1 -516.4 1034.9 28.2 0 

Herpetofauna 

     

 

Top model 7 -1504.8 3023.7 0 0.83 

 

Second model 6 -1508 3028 4.3 0.1 

 

global model 10 -1507.3 3034.7 11 0 

 

Null 3 -1575.7 3157.4 133.8 0 

Insects 

      

 

Top model 11 -1459.8 2941.8 0 0.62 

 

Second model 

(global) 12 -1459.3 2942.8 1 0.38 

  Null 3 -1581.4 3168.9 227.1 0 

  798 
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Supplementary Material 2. Model performance diagnostics for the top models of the 799 

(Supplementary Material 1) likelihood of certain prey groups being recorded in feral cat stomachs. 800 

For two-stage hurdle models of count data, we present rootograms and QQ residual plots (rodents 801 

20-60g, reptiles, small mammals <20g, insects). For binary models of presence-absence (Rabbits and 802 

birds), we present Area Under Curves (AUC) plots and QQ residual plots 803 

 804 
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 807 


