This is a peer reviewed version of the following article: Hohnen, R., Murphy, B.P., Legge, S.M., Dickman, C.R., Woinarski, J.C.Z. (2019) Uptake of ‘Eradicat’ feral cat baits by non-target species on Kangaroo Island. *Wildlife Research* Vol. 47, 547-556; which has been published in final form at https://doi.org/10.1071/WR19056
Uptake of “Eradicat” feral cat baits by non-target species on Kangaroo Island

Authors: Rosemary Hohnen¹, Brett P. Murphy¹, Sarah M. Legge²,³, Chris R. Dickman ⁴, John C.Z. Woinarski¹

¹ National Environmental Science Program Threatened Species Recovery Hub, Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia
² National Environmental Science Program Threatened Species Recovery Hub, Centre for Biodiversity and Conservation Science, University of Queensland, St Lucia, QLD 4075, Australia
³ National Environmental Science Program Threatened Species Recovery Hub, Fenner School, The Australian National University, Canberra, ACT 2601, Australia
⁴ National Environmental Science Program Threatened Species Recovery Hub, Desert Ecology Research Group, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia

Email addresses: Rosemary Hohnen (rosemary.hohnen@cdu.edu.au), Brett Murphy (brett.murphy@cdu.edu.au), Sarah Legge (sarah.legge@anu.edu.au), Chris Dickman (chris.dickman@sydney.edu.au), John Woinarski (john.woinarski@cdu.edu.au)

Running title: Non-target feral cat bait uptake

Key words: cat control, management, eradication, 1080, threatened species

* Corresponding author: Rosemary Hohnen
Phone: +61473110302
Email: rosemary.hohnen@cdu.edu.au
Address: Charles Darwin University, Casuarina Campus, Darwin, Australia 0909
To protect biodiversity, feral cat baiting programs are being increasingly implemented across Australia. We examined the impacts of ‘Eradicat’ feral cat baiting on non-target species native to Kangaroo Island, using a non-toxic bait trail. We found non-target uptake was high particularly by common brushtail possums (Trichosurus vulpecula) and bush rats (Rattus fuscipes), and therefore potentially other feral cat baits may be more appropriate for this area.
ABSTRACT

Context
Predation by feral cats (*Felis catus*) threatens a range of vertebrate species across Australia, and cat-free islands increasingly act as safe havens for biodiversity. A feral cat eradication program has begun on Kangaroo Island (4,405 km²) in South Australia, and poison baiting is likely to be one of the main methods used.

Aims
Here we trial a non-toxic version of a cat bait, “Eradicat”, on western Kangaroo Island to examine its potential impact on non-target species.

Methods
Non-toxic baits containing the biomarker Rhodamine B were deployed across four sites in early August and late November in 2018, with bait take and consumption assessed both by remote cameras and by the presence of Rhodamine B in mammalian whisker samples taken post-baiting.

Key results
Cats encountered baits on very few occasions and took a bait on only one occasion in August (<1% of 576 baits deployed). Non-target species accounted for over 99% of identifiable bait takes. In both seasons >60% of all baits laid, were taken by either the common brushtail possum (*Trichosurus vulpecula*), bush rat (*Rattus fuscipes*) or Australian raven (*Corvus coronoides*). In November, Rosenberg’s goanna (*Varanus rosenbergi*) and southern brown bandicoot (southeastern subspecies; *Isoodon obesulus obesulus*), listed nationally as Endangered, also took baits (3% and 1%, respectively). The Kangaroo Island dunnart (*Sminthopsis fuliginosus aitkeni*), listed nationally as endangered, approached a bait on only one occasion but did not consume it. Evidence of bait consumption was visible in the whiskers of captured common brushtail possums (100% of post-baiting captured individuals in August, 80% in November), bush rats (59% in August and 50% in November), house mice (*Mus musculus*) (45% in November) and western pygmy-possums (*Cercartetus concinnus*) (33% in November).

Conclusions
While feral cat baiting has the potential to significantly benefit wildlife on Kangaroo Island, impacts on non-target species (particularly the bush rat and common brushtail possum) may be high.

Implications
Alternative cat baits, such as those containing a toxin to which native species have a higher tolerance or are less readily consumed by native wildlife, will be more appropriate.
INTRODUCTION

Introduced vertebrate predators are one of the top threats to Australian wildlife (Evans et al. 2011). Since European colonisation of Australia, the feral cat (*Felis catus*) and European red fox (*Vulpes vulpes*) have contributed to the extinction of at least 22 of the 30+ mammal species that have disappeared from Australia (Woinarski et al. 2014). Some Australian mammals now persist only in areas without introduced predators, such as offshore islands or within fenced predator-free enclosures (Dickman 1996; Legge et al. 2018).

Kangaroo Island is one of Australia’s largest offshore islands (4405 km2) and is considered a stronghold for some vertebrate species that are now rare or threatened on the adjacent mainland. These include Rosenberg’s goanna (*Varanus rosenbergi*), pygmy copperhead (*Austrelaps labialis*), bush stone-curlew (*Burhinus grallarius*), glossy black-cockatoo (*Calyptorhynchus lathami*) and southern brown bandicoot (*Isoodon obesulus obesulus*) (Pepper 1996; Gates and Paton 2005; Rismiller et al. 2010). However, surveys over the last 15 years indicate that some of the island’s fauna are now rare, such as the Kangaroo Island dunnart (*Sminthopsis fuliginosus aitkeni*), and heath mouse (*Pseudomys shortridgei*), or locally extinct, such as the spotted-tailed quoll (*Dasyurus maculatus*) (Kemper et al. 2010; Gates 2011; Haouchar et al. 2014). The island is free of the red fox and European rabbit (*Oryctolagus cuniculus*), but does have high densities of feral cats (Bengsen et al. 2011), which are likely to be a key threat to the persistence of a number of the island’s animal species, especially mammals.

Both for economic and environmental reasons, Kangaroo Island is one of five offshore Australian islands for which eradication of feral cats is proposed within the next decade (Australian Federal Government 2015). Poison baiting of feral cats is one of the main methods likely to be used in this process, as baits can be dropped aerially, allowing cats to be controlled in locations inaccessible by road (Algar and Burrows 2004). Cat baiting trials have occurred across Australia with their success varying with factors such as bait palatability and the abundance of food resources in the landscape at the time of baiting (Algar and Burrows 2004; Algar et al. 2007; Moseby et al. 2009; Buckmaster 2012). Recent studies suggest that if cat baiting can be done effectively, strong positive benefits are immediately experienced by resident wildlife populations (Robinson et al. 2015; Macdonald et al. 2017). “Eradicat®” is the only feral cat bait that can be purchased in Australia, under strict conditions managed by the Western Australian Department of Biodiversity, Conservation and Attractions. Each sausage-shaped bait consists of 15 g of kangaroo meat and chicken fat and contains 4.5 mg of sodium fluoroacetate, a poison widely known as “1080”.

While 1080 baiting may benefit native wildlife populations by decreasing the rate of predation by feral cats, there is also potential for the baiting to have direct negative impacts on wildlife if they consume the baits, as many native species are readily killed if they ingest the poison. 1080 occurs naturally in some Australian
plant genera, particularly *Gastrolobium* (Twigg et al. 2003), and native mammals tend to have higher tolerance of 1080 in areas where *Gastrolobium* spp. are common, such as southwestern Australia (Twigg and King 1991; Twigg et al. 2003). Tolerance can vary even within a species, for example bush rats (*Rattus fuscipes*) from southwestern Australia have a much higher 1080 tolerance (LD50 of 30.1 mg kg$^{-1}$) than individuals from South Australia (LD50 of <1.8 mg kg$^{-1}$) (Twigg et al. 2003). The term 'LD50' is often used in toxicology to describe the amount of a substance an animal needs to consume for it to be lethal 50% of the time.

The southern brown bandicoot and Kangaroo Island dunnart are two nationally-listed threatened taxa found on Kangaroo Island that would likely benefit significantly from cat control; however, neither is likely to have a high tolerance of 1080. While no studies have directly examined the 1080-tolerance of Kangaroo Island dunnarts, a congeneric species of similar size, the fat-tailed dunnart (*Sminthopsis crassicaudata*), has a low tolerance (LD50 = 2.06 mg kg$^{-1}$) (Calver et al. 1989) and needs to consume only 0.09 g (0.6 %) of a 15 g Eradicat bait to reach LD50 (Sinclair and Bird 1984). The southern brown bandicoot has a slightly higher tolerance of 1080 (LD50 = 7 mg kg$^{-1}$) (Twigg et al. 1990) and would need to consume 21 g of Eradicat bait (1.2 baits) to reach LD50. The bush rat and common brushtail possum from southeastern Australia also have a reasonably low tolerance of 1080 and would reach their LD50 with consumption of 0.4 and 5.8 g (respectively) of an Eradicat bait (LD50 = 1.8 and 0.9 mg kg$^{-1}$, respectively) (Twigg and King 1991; Twigg et al. 2003). If significant proportions of the local populations of these species consumed Eradicat baits, post-baiting population declines would be likely. On Christmas Island bait suspension devices successfully decreased bait consumption by non-target species such as land crabs (*Cardisoma carnifex*), hermit crabs (*Coenobita perlata*), black rats (*Rattus rattus*) and feral chickens (*Gallus domesticus*) (Algar and Brazell 2008), however such devices are unlikely to be effective on Kangaroo Island due to the abundance (and proclivity for taking bait) of common brush tailed possums which are likely to be able to reach anything accessible to a cat.

Eradicating cats on islands can support long-term native wildlife conservation (Campbell et al. 2011; Robinson et al. 2015), but before eradication occurs it is important that the methods used are effectively evaluated. A low tolerance of 1080 is only a problem if non-target animals eat the baits, but no field based studies have successfully examined the propensity of these species in South Australia to do so. A desktop analysis of potential bait uptake by Australian mammals by Buckmaster et al. (2014), estimated that both southern brown bandicoots and Kangaroo Island dunnarts could potentially eat Eradicat baits, but this is yet to be confirmed in the field. One small-scale trial of Eradicat was run on eastern Kangaroo Island, but at sites with no known records of the southern brown bandicoot or Kangaroo Island dunnart, and bait consumption was examined only using camera traps and with no use of non-toxic biomarker to examine bait ingestion (P. Hodgens 2017, unpublished data). A second non-toxic trial of a cat bait called “Curiosity®” was run on eastern Kangaroo Island, but was unsuccessful as bait uptake was determined by animal tracks which could not be
identified on over 50% of occasions (Denny 2009). Therefore, the broadscale impacts and feasibility of Eradicat baiting on Kangaroo Island remain unknown.

To examine the non-target impacts of Eradicat baiting we ran an uptake trial of non-toxic baits on western Kangaroo Island at sites with recent records of the Kangaroo Island dunnart and southern brown bandicoot. We aimed to determine: 1) what proportion of non-toxic Eradicat baits is taken by feral cats compared to non-target species, 2) what proportion of non-target species populations will consume non-toxic Eradicat baits, and 3) how uptake by non-target species varies between sites that are baited once (representative of aerial baiting), or multiple times (representative of long-term intensive baiting). The results of this study should indicate the extent to which both cats and non-target species will be impacted by Eradicat baiting on Kangaroo Island, and hence whether this method has utility for cat eradication there.

MATERIALS AND METHODS

Study area

The non-toxic Eradicat bait uptake trial was conducted at four sites within the Flinders Chase National Park and Ravine des Casoars Wilderness Protected Area on western Kangaroo Island (Figure 1). This part of the island receives 600–800 mm of rain annually, mostly between May and September (Bureau of Meteorology 2017). Sites had an overstory of Kangaroo Island mallee-ash (Eucalyptus remota), brown stringybark (E. baxteri) and coastal white mallee (E. diversifolia). All sites were baited and subsequently trapped in both winter/spring (August 2018) and spring/summer (November), to examine how bait uptake varies with temperature and rainfall. Previous trapping at these sites in 2017 and 2018 had identified that the Kangaroo Island dunnart (listed nationally as Endangered) was present at all sites, and the southern brown bandicoot (listed nationally as Endangered) was known from two of the sites (Hohnen et al. 2019). Other terrestrial vertebrates native to Kangaroo Island (and likely to take baits), such as the bush rat, western pygmy-possum (Cercartetus concinnus), little pygmy-possum (C. lepidus), common brushtail possum, tammar wallaby (Notamacropus eugenii), western grey kangaroo (Macropus fuliginosus) and Rosenberg’s goanna, were present at all sites.

Non-toxic baiting

Each non-toxic Eradicat bait (15 g when dried, 20 g when wet) contained 20 mg of Rhodamine B, a non-toxic substance used to trace bait uptake by mammals (Fisher et al. 1999; Fairbridge et al. 2003). The baits contained 70% kangaroo meat, 20% chicken fat, 10% digest and flavour enhancers (Patent No. AU13682/01) (Algar and Burrows 2004). Prior to deployment, baits were “sweated” by defrosting in the sun so that oils
formed on the surface of the sausages to make them smell more strongly. All sausages were dusted with Coopex® insecticide to prevent attack by ants and other insects. This insecticide has previously been reported to not reduce bait acceptability to feral cats (Algar and Burrows 2004). At each site there was a 3 x 4 grid of 12 baits spaced equidistant on a 100 m grid which (including a buffered area of 100 m around the grid) results in 0.2 km⁻² area (0.4 km x 0.5 km). The resulting baiting density of 60 baits km⁻² (12 baits 0.2 km⁻²) was based on densities used in successful bait trials set in similar eucalypt woodland habitat on French Island (Johnston et al. 2011). Previous baiting programs have successfully achieved cat population declines using a wide range of bait densities from 10-25 baits km⁻² in open desert habitat (Burrows et al. 2003; Moseby and Hill 2011) to 100 baits km⁻² in coastal Western Australia (Algar and Burrows 2004). The manufacturers suggest the densities of 10 baits km⁻² for ground baiting and from 25-50 baits km⁻² for aerial bait deployments (Algar and Burrows 2004; Algar et al. 2013).

At each bait location, a motion-activated Reconyx® Rapidfire PC 800 or HC 600 camera trap (Holmen, Wisconsin, USA) (used to identify species visiting and removing bait) was attached to a stake positioned 0.5 m off the ground. The camera was angled downwards at 45° to face a bait positioned on the ground 0.5 m away, in the centre of a flat area where the vegetation had been removed. Cameras were programmed to take three images per trigger, one second apart, with no minimum time delay between triggers. Camera traps were revisited on six occasions over the two-week baiting period. On each revisit, the presence/absence of a bait at a given station was recorded and all missing or old baits were replaced, resulting in a total of 72 baits deployed at each site in each trapping period. Rebaiting was conducted for two reasons, firstly to test for differences in bait uptake between the first round of baiting (representing of aerial baiting at a density of 60 baits/km²) and all six rounds (representing intensive baiting), and secondly to maximise the chances of a Kangaroo Island dunnart encountering a bait as this species occurs at very few sites and very low densities (Hohnen et al. 2019). It should be noted that in some areas baiting densities differ from those trialed in this study. For example in Western Australia, when 50 baits are aerially deployed they are distributed over an area of 200 x 40 m within each 1 km² cell. To evaluate how uptake by non-target species varied between sites baited once (representative of aerial baiting) or multiple times (representative of long-term intensive baiting), we ran a chi-squared test of independence in R (R Development Core Team 2018).

Trapping

Two weeks after the baiting period, all sites were trapped for six nights. We set eight pitfall traps, 12 cage traps and 24 Elliott traps in a grid formation across each trial site. The pitfall tramilies consisted of two pitfall traps (buckets 70 cm deep, 28 cm diameter) located ~5 m from the distal ends of a 30 m drift fence line (Figure 2). This fence consisted of impermeable black plastic, 60 cm high, held up by metal stakes, forming a solid barrier that guided animals moving through the site towards the pitfall traps. Pits were left open and
checked at dawn and dusk. Cage and Elliott traps were only opened in the evening and checked and closed at
dawn, and were baited with a mixture of peanut butter and oats.

(Figure 2)

All captured animals including mammals, reptiles and amphibians were identified to species. Captured
mammals were placed into calico bags, weighed and their sex determined. To identify recaptures of individuals,
a tuft of hair was removed from the rump. To determine the extent of Rhodamine B ingestion (as an indication
of bait consumption) by the captured mammals, eight mystacial vibrissae (whiskers) were plucked from each
individual using forceps. The whisker was gripped close to the skin so that the entire whisker was removed
from the follicle. If bait was ingested, Rhodamine B would be detectable in the whiskers within four days of
consumption (Fisher 1999). While ingestion of bait can be detected, this method does not determine how much
bait was consumed. Following processing, animals were released at the point of capture. The whiskers were
stored in sealed envelopes for later mounting and examination under a fluorescence microscope to check for
traces of Rhodamine B.

Whisker analysis

Whiskers were analysed following the protocol outlined in Fisher (1998). Whiskers from each sample were
washed in 70% ethanol and then dried and mounted onto a slide using Fluoroshield mounting fluid (Sigma, St
Louis, Montana, USA), and sealed using clear nailpolish. The samples were viewed under a Zeiss Axiosop 2
fluorescence microscope (Zeiss, Oberkochen, Germany), using a green filter (Filter 21) so that light emission
from the Rhodamine B could be seen. We noted the banding characteristics on each whisker, including both the
number and position. The number of banded whiskers per sample was also recorded.

Tolerance of 1080

We assessed the likely 1080-tolerance (LD50) of wildlife on western Kangaroo Island through a literature
review. Where possible, we used studies that sourced animals from places that did not have plants that
naturally contain 1080 (such as *Gastrolobium* spp.) (Eason et al. 1992), therefore using animals that were
similar in their 1080 exposure to those on Kangaroo Island. This is because across Australia the 1080-tolerance
of a species can differ, depending on whether or not it has evolved in an area where 1080 naturally occurs in
local plants (Twigg et al. 2003). We calculated the amount of an Eradicat bait an individual could consume for
all non-target species that took baits during the trial, using the literature to find estimates of both the LD50 and
average weight of adult individuals in the non-target species. Calculations for the amount of 1080, the weight
of bait, and the total amount of a bait an animal needs to consume to reach LD50 are provided in the
supplementary material (Table S1). Note that animals may also show significant but non-lethal responses to
bait uptake, so our assessment of LD50 does not encompass all possible detrimental impacts of bait
consumption. The species with the lowest tolerance to 1080 were the house mouse and bush rat followed by
the tammar wallaby, feral cat, common brushtail possum, southern brown bandicoot and western grey kangaroo (Full details in Table 1.)

(Table 1.)

RESULTS

Baiting

In each baiting period (early August and late November), 12 baits were deployed across each of the four sites on six baiting occasions (288 per season, and 576 in total). When the bait stations were checked 2-3 days after deployment, almost 100% of baits (287/288) had been removed in August, and 89% of baits (257/288) had been removed in November. In August, cameras recorded vertebrate animals removing the baits on 71% (204/287) of the occasions when a bait was taken but missed photographing the bait-taking animal on 29% of occasions. Of the 71% of identifiable bait takes, the majority involved the bush rat, common brushtail possum, Australian raven (*Corvus coronoides*), with a few by the house mouse (*Mus musculus*) (Table 2,3). In the November baiting episode, cameras recorded vertebrates removing baits on 80% (207/257) of occasions when a bait was taken but failed to photograph the species that took baits on 20% of occasions. Of the 80% of bait takes the cameras recorded, most involved the common brushtail possum, bush rat, Australian raven and with a low percentage taken by Rosenberg’s goanna, the southern brown bandicoot and the house mouse. Some species, including the tammar wallaby, western grey kangaroo and Kangaroo Island dunnart triggered the cameras when a bait was present, but were not recorded taking the bait (Table 2). In August, feral cats were photographed encountering a bait on only two occasions and were recorded consuming the bait once. In November, feral cats were recorded encountering baits on four occasions but were not recorded consuming any.

(Table 2 and 3)

Species that took baits most frequently upon encounter (across both seasons) were the Australian raven (100% or 77/77), Rosenberg’s goanna (100% or 7/7), bush rat (94% or 159/169), common brushtail possum (90% or 154/171) and house mouse (77% or 10/13). Species with low uptake rates included the southern brown bandicoot (25% or 3/12) and feral cat (17% or 1/6) (Table 2). Although the tammar wallaby, western grey kangaroo and short-beaked echidna encountered baits reasonably frequently (61, 13 and 12 encounters, respectively), none took baits on these occasions.

When considering the first round (i.e. the 2-3 days after initial deployment) of baiting only, 48 baits were deployed across four sites in both August and November. After 2-3 days, 98% (47/48) of baits had been taken.
In August, and 60% (29/48) in November. In August, cameras detected the species that took the baits on 29 of the 47 occasions a bait was taken (62%), and of those most were taken by the bush rat, common brushtail possum, and Australian raven (Table 3). In November, cameras detected the species that took the bait on 93% of occasions, and again the majority were taken by the common brushtail possum, Australian raven, bush rat, but with 10% taken by Rosenberg’s goanna. For all seasons, the bush rat, common brushtail possum and Australian raven took baits on > 80% of instances they encountered them (Table 2). When considering the November and August data together, the frequency of bait uptake by different species did not vary between the first round of baiting and all six rounds ($\chi^2 (5) = 6.8, p = 0.23$). Similarly, there was no difference between the first round and all six rounds in November ($\chi^2 (5) = 8.4, p = 0.13$), however in August there was a significant difference ($\chi^2 (3) = 13.4, p = 0.003$), potentially driven by the higher proportion of bait takes by the bush rat in the first round.

(Table 2, Table 3)

Whisker analysis

Whisker samples were collected principally from the common brushtail possum, bush rat and house mouse, as well as the southern brown bandicoot, little pygmy-possum and western pygmy-possum. All 18 brushtail possums (100%) caught in August exhibited banding in their whiskers indicative of having eaten a bait. In November 83% of brushtail possums caught (10 total) exhibited evidence of having eaten a bait (Table 4). At least half the bush rat population exhibited evidence of bait consumption in both August (59%) and November (50%). For the house mouse, 59% of captured individuals (5 total) showed evidence of bait consumption in August, but none showed evidence of bait consumption in November. While captures of other species were too few to make robust conclusions, no captured little pygmy-possum or southern brown bandicoot showed evidence of having consumed a bait. In contrast, evidence of bait consumption was detected in whiskers of two western pygmy-possums (33%) caught in November. It is important to note that while bait consumption can be detected, the amount of bait consumed by these individual animals cannot.

(Table 4)

DISCUSSION

Our results indicate that baiting of feral cats on western Kangaroo Island using Eradicat baits could have a large negative impact on non-target native species. Non-target species accounted for over 99% of identifiable bait takes, with only one bait taken by a feral cat. In both August and November the common brushtail possum, bush rat and Australian raven – all locally abundant – accounted for over 60% of all bait takes, and all three of these species have a reasonably low tolerance of 1080, needing to consume less than a single bait for it to be...
lethal in most cases. However, Rosenberg’s goanna (listed as vulnerable in South Australia) was not reported at bait stations in August and took baits only in November, suggesting that impacts of baiting on this species could be minimised by baiting in August when the species is inactive. Impacts on the Kangaroo Island dunnart and southern brown bandicoot were difficult to determine due to the low number of detections. Feral cats remain a significant threat to native fauna on the island, and feral cat baiting is still the most cost-effective method of controlling cats in wilderness areas (Algar and Burrows 2004). However, it appears broadscale Eradicat baiting could have large negative impacts on common native fauna, and the investigation or other baits or avenues of cat control may be required.

Both the common brushtail possum and bush rat took over 50% of the all baits laid in both November and August, and both species took the baits on over 80% of occasions that they encountered them. Over 50% of bush rats, and 80% of possums captured at the sites in both November and August showed evidence that they had consumed baits. Both species have low tolerance of 1080, with the possum needing to consume only half of a 15 g Eradicat bait to reach its LD50, and the bush rat just 1% of a 15 g bait. Few studies have previously documented impacts of feral cat baiting on these common species. In a study by Fenner et al. (2009), bush rat populations were not impacted by baiting for foxes, but the raw meat baits used in that study had a lower concentration of 1080 (0.024 mg g⁻¹ bait, compared to 0.3 mg g⁻¹ Eradicat bait), and were deployed at a lower density (40 baits km⁻²) than in both the current study (60 baits km⁻²), aerial feral cat baiting operations in Western Australia (Algar et al. 2013), and the Northern Territory (Macdonald et al. 2017). The common brushtail possum has been recorded taking raw meat (fox) baits (Martin et al. 2002; Mallick et al. 2016), grain (Gillies and Pierce 1999; Veltman and Pinder 2001), and carrot baits (Murphy et al. 1999; Spurr and Drew 1999) but no studies have examined the uptake of feral cat baits (which differ from the above in their form and composition). The results from our study suggest that baiting could have a large negative impact on both the bush rat and common brushtail possum.

The Australian raven could also be negatively affected by Eradicat baiting (taking 11% and 17% of baits in both August and November, respectively) as baits were taken on 100% of occasions that they were encountered. This species also has an LD50 low enough that a single bait could be lethal (McIlroy 1984; Powlesland et al. 1999). In a separate Eradicat trial on eastern Kangaroo Island, uptake by corvids varied with season, but was sometimes as high as 40% (P. Hodgens pers. comm.). In central Western Australia, corvids also took over 40% of Eradicat baits (Doherty and Algar 2015) and in South Australia 11% (Moseby and Hill 2011). Corvids are highly visual predators, and in systems were they are a serious nest predators, predation rates are highest at the most obvious nests (Ekanayake et al. 2015). High rate of bait uptake by corvids in our study may have been influenced by us hand-baiting, with corvids watching our behaviour. Aerial baiting would not provide such visual cues to corvids, so their rate of take may be lower in such situations.
In contrast to the aforementioned species, continuous baiting may have a low impact on Rosenberg's goanna (listed in South Australia as Vulnerable). In this trial, Rosenberg's goanna was very likely to take the baits in November when the ambient temperature was warmer and they were active (seven bait takes from seven encounters). Previous bait trials across Australia have recorded high bait uptake by varanids both in captivity (De Tores et al. 2011) and in the wild (Doherty and Algar 2015). However, this species has a reasonable tolerance of 1080 and needs to consume more than six baits to reach its LD50. Also, this species is inactive during the colder months there were no sightings on the cameras in August, and therefore baiting impacts could be mitigated by restricting baiting to this time of year. A similar pattern was noticed for the southern brown bandicoot, with bait uptake for this species occurring only in November (three bait takes from 12 encounters); however, this encounter rate was too low for robust conclusions to be made. In previous trials a mixture of wild and captive bandicoots were found to consume on average 8.5 g of a 20 g bait, and on some occasions consume the whole bait (Hetherington et al. 2007), suggesting that in some circumstances they will eat a sufficient amount of bait to approach their LD50 threshold.

The Kangaroo Island dunnart has largely disappeared from eastern Kangaroo Island, and is rarely encountered in the west (Hohnen et al. 2019). It is likely to benefit significantly from control of Kangaroo Island’s feral cat population; however, the impact of feral cat baiting on this species is uncertain. There is evidence that other species of dunnart have a low tolerance of 1080, particularly those from areas outside the distribution of *Gastrolobium* spp., including *Sminthopsis crassicaudata* (LD50 2.06 mg kg$^{-1}$, or 1% of an Eradicat bait) and *S. macroura* (LD50 = 1 mg kg$^{-1}$, or 7% of an Eradicat bait) (Calver et al. 1989). However, Sinclair and Bird (1984) suggested that *S. crassicaudata* may be able to detect the presence of 1080, as captive individuals conditioned to eating meat significantly decreased their intake (and in some instances vomited) when consuming meat dosed with 2.83 mg kg$^{-1}$ of 1080. Field-based studies elsewhere, including in the Gibson Desert and the MacDonnell Ranges in central Australia, found no evidence of Eradicat bait consumption or a post-baiting population decline of *Sminthopsis* species (Angus et al. 2002; Macdonald et al. 2017). In the current study, unfortunately only one Kangaroo Island dunnart approached a camera when a bait was available, and while it did not eat the bait, little can be inferred from a single such encounter. Furthermore, population-scale impacts of bait consumption need to be contextualised with reference to the relative population size of different species. Although our study reported few instances of Kangaroo Island dunnarts and southern brown bandicoots encountering and consuming baits relative to the numbers of common brushtail possums and bush rats doing so, it may be that a higher proportion of the total population of bandicoots took bait than was the case for brushtail possums and bush rats. However, the total population sizes of these species in the study area are not known.

In our study, rates of bait encounter and uptake by feral cats were very low. Cats were recorded encountering baits on only two occasions in August and four occasions in November (out of the total 576 baits laid). Of the six baits encountered, a cat took only one bait (in August). Uptake of baits by cats in previous studies appears
very variable, with some high (e.g. 89% and 75%) (Johnston et al. 2011; Robinson et al. 2015) and some low (e.g. 20% to > 5%) (Algar et al. 2011; Moseby and Hill 2011). The likelihood of a bait being encountered by a cat varies with the density of cats, the density of baits, and the level of competition with other species for the baits (Algar et al. 2007; Moseby and Hill 2011). The density of baits used in this study (60 baits km\(^{-2}\)) was based on successful bait trials in similar eucalypt habitat on French Island in south eastern Australia (Johnston et al. 2011). Given that the average home range of a cat on eastern Kangaroo Island is about 3.7 km\(^2\) (P. Hodgens unpublished data), a cat at a given site would likely have had access to all 12 stations within its home range. As the size of each the four sites could fit within one individual cat’s home range, potentially the trial sites were too small for many cats to have had access to them, so our results may reflect behavioural responses of very few individual cats. If the baits were deployed on a landscape scale, this would cease to be an issue. Previous baiting programs have successfully achieved cat population declines using a wide range of bait densities from 10-25 baits km\(^{-2}\) in open desert habitat (Burrows et al. 2003; Moseby and Hill 2011) to 100 baits km\(^{-2}\) in coastal Western Australia (Algar and Burrows 2004). Potentially low bait encounter rates, as observed in our study, may also reflect a low density of cats. On western Kangaroo Island there are 0.3-0.5 cats km\(^{-2}\), a higher density than the average for mainland Australia (R. Hohnen unpublished data), but lower than on eastern Kangaroo Island where densities are 0.5-0.8 cats km\(^{-2}\) (P. Hodgens unpublished data). Higher bait encounter and uptake rates observed by a similar study on eastern Kangaroo Island might reflect higher densities of cats on that side of the island (P. Hodgens, unpublished data). Also, we observed high competition for baits, with non-target species involved in 99% of identifiable bait takes August and November, decreasing bait availability for the target species.

Low bait uptake may also reflect a disinterest in scavenging. This has been observed in feral cats in other parts of Australia (Catling 1988; Short et al. 2002). On eastern Kangaroo Island, however, this does not seem to apply, as cats are readily caught in cage traps using chicken as bait (P. Hodgens, unpublished data). This discrepancy may reflect the large number of roads and therefore roadkill on eastern Kangaroo Island, making cats in the east more accustomed to scavenging than those in the west (where there are few tracks and relatively little traffic), and therefore also more likely to eat baits.

In this trial we compared bait uptake between an initial single round of baiting, and multiple rounds of baiting. This is because, potentially, uptake during the first round of baiting is more reflective of uptake during broadscale aerial baiting, where individuals have no previous experience with the baits. In contrast, after multiple rounds of baiting at a given site, animals might learn where the bait stations are and, if they survive the first round, target them. However, there were relatively few differences in uptake when comparing the first round of baiting to the whole trial. In August, total uptake in the first round was very similar to the whole trial (98% compared to 99%), but in November, uptake during the first round was lower than the whole trial (60% compared to 98%). The results of the chi-squared tests suggest that proportional uptake by the various non-target species did not differ between the first round and all rounds in November, or when considering both
seasons together, but did vary in August potentially driven by higher uptake of bush rats during the first round. Despite this in both the first round of baiting and in all rounds, the common brushtail possum, bush rat and Australian raven took over 60% of the baits. Overall, these results suggest that irrespective of how baits are deployed (once, or continually in a targeted manner), uptake by non-target species will be high.

While Eradicat is the only feral cat bait currently available for commercial use in Australia, two others are in development: “Curiosity®” and “Hisstory®”. Both baits have a sausage-shaped meat exterior similar to Eradicat but use a hard-shelled delivery vehicle (HSDV), where poison is encapsulated in a hard, though digestible, pellet that sits in the centre of the sausage (Algar and Burrows 2004; Marks et al. 2006). The idea is that native Australian mammals generally chew their food such that they would likely eat around the hard capsule, whereas cats, that eat their prey without chewing, would swallow it whole, with the toxin released when the HSDV dissolves in the cat’s digestive tract (Marks et al. 2006). The baits use different toxins: “Hisstory” uses 1080, “Curiosity” uses para-aminopropiophenone, to which some Australian mammals have a higher tolerance (Fisher et al. 2008). Buckmaster et al. (2014) suggest that the use of a HSDV may help decrease potential impacts on the common brushtail possum, but potentially not the bush rat (that may be able to chew into them) or the Australian raven (which may be able to swallow baits whole).

Ultimately, the results of this trial suggest that Eradicat may be an inappropriate choice of bait for broadscale feral cat control on western Kangaroo Island. Impacts on common species are of particular concern with populations of the bush rat, common brushtail possum and Australian raven likely to be severely negatively affected by the use of this bait. However, impacts on species such as Rosenberg’s goanna may be avoided by baiting in August. Unfortunately, encounter rates by the threatened southern brown bandicoot and Kangaroo Island dunnart were too low to draw robust conclusions, except to confirm that bandicoots will consume baits in some circumstances. Other feral cat baits that are currently in development such as “Curiosity” or “Hisstory” may have lower impacts on Kangaroo Island wildlife and could therefore be more appropriate to deploy at both local and landscape scales. As uptake of baits by cats was low in this study, we suggest that further investigation into the home range size and movements of feral cats on western KI could inform and optimise the placement of alternative baits and increase cat encounter rates.

ACKNOWLEDGEMENTS

This study was funded by the National Environment Science Program’s Threatened Species Recovery Hub (Project 1.1.10), and supported by the South Australian Department of Environment and Water. Study methods were approved by Charles Darwin University’s Animal Ethics Committee (Permit Number A18008), and the South Australian Department for Environment, Water and Natural Resources (Scientific research permit E26739-1). Big thanks to contributing volunteers and Natural Resources Kangaroo Island staff who
helped make this research possible, including Áine Nicholson, Alex Hartshorne, Hannah Vassiliades, Laura O’Connor, Megan Barnes, Pat Hodgens, Robyn Molsher, Martine Kinloch and Caroline Patterson.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

REFERENCES

Denny, E. (2009). Feral cat bait uptake trails 2. Kangaroo Island. Invasive Animals Cooperative Research Centre. (School of Biological Sciences, University of Sydney.)

FIGURE CAPTIONS

Figure 1: Locations of four sites where non-toxic ‘Eradicat’ baits were deployed, on western Kangaroo Island.

Figure 2. Aerial view of the non-toxic baiting trial site design. Large squares indicate camera trap stations, small squares indicate Elliott traps, rectangles indicate cage traps and circles indicate pitfall traps.
Table 1: The number of 15 g Eradicat baits that a species must consume before reaching its LD50. The origin of animals used in the study, relative to the distribution of plants that naturally contain 1080, is included (adapted from Twigg and King 1991), where OKR = outside known range, PE = potential exposure, IKR = inside known range.

<table>
<thead>
<tr>
<th>Common name</th>
<th>Scientific name</th>
<th>Location</th>
<th>Average adult body weight (kg)</th>
<th>LD50 (mg kg⁻¹)</th>
<th>Amount of 1080 for LD50</th>
<th>Weight of bait for LD50 (g)</th>
<th>Number of baits for LD50</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australian raven</td>
<td>Corvus coronoides</td>
<td>PE</td>
<td>0.6</td>
<td>5.1</td>
<td>3.0</td>
<td>9.9</td>
<td>0.7</td>
<td>McIlroy et al. (1984)</td>
</tr>
<tr>
<td>Common brushtail possum</td>
<td>Trichosurus vulpecula</td>
<td>OKR</td>
<td>2.6</td>
<td>0.9</td>
<td>2.2</td>
<td>7.5</td>
<td>0.5</td>
<td>McIlroy et al. (1982)</td>
</tr>
<tr>
<td>Bush rat</td>
<td>Rattus fuscipes</td>
<td>OKR</td>
<td>0.1</td>
<td>1.8</td>
<td>0.1</td>
<td>0.5</td>
<td><0.1</td>
<td>Twigg et al. (2003)</td>
</tr>
<tr>
<td>Cat</td>
<td>Felis catus</td>
<td>PE</td>
<td>4.2</td>
<td>0.3</td>
<td>1.7</td>
<td>5.6</td>
<td>0.4</td>
<td>Eason et al. (1992)</td>
</tr>
<tr>
<td>House mouse</td>
<td>Mus musculus</td>
<td>PE</td>
<td>0.0</td>
<td>8.3</td>
<td>0.1</td>
<td>0.4</td>
<td><0.1</td>
<td>Twigg and King (1991)</td>
</tr>
<tr>
<td>Rosenberg’s goanna</td>
<td>Varanus rosenbergi</td>
<td>OKR</td>
<td>0.7</td>
<td>40</td>
<td>28</td>
<td>93</td>
<td>6.2</td>
<td>Twigg and King (1991)</td>
</tr>
<tr>
<td>Southern brown bandicoot</td>
<td>Isoodon obesulus</td>
<td>OKR</td>
<td>0.8</td>
<td>7.0</td>
<td>5.6</td>
<td>19</td>
<td>1.2</td>
<td>Twigg and King (1991)</td>
</tr>
<tr>
<td>Tammar wallaby</td>
<td>Notamacropus eugenii</td>
<td>OKR</td>
<td>6.0</td>
<td>0.2</td>
<td>0.9</td>
<td>3.0</td>
<td>0.2</td>
<td>Oliver et al. (1979)</td>
</tr>
<tr>
<td>Western grey kangaroo</td>
<td>Macropus fuliginosus</td>
<td>OKR</td>
<td>30</td>
<td>20</td>
<td>600</td>
<td>2000</td>
<td>133</td>
<td>Oliver et al. (1979)</td>
</tr>
</tbody>
</table>
Table 2: November and August bait uptake by wildlife species on western Kangaroo Island including data from a.) the first round of baiting, and b.) all six rounds of baiting. The number of times the animals triggered the cameras when a bait was present, and the times they took the baits, are shown.

<table>
<thead>
<tr>
<th>Common name</th>
<th>Scientific name</th>
<th>Total triggers</th>
<th>Bait taken</th>
<th>% uptake</th>
<th>Total triggers</th>
<th>Bait taken</th>
<th>% uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.) First round of baiting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australian raven</td>
<td>Corvus coronoides</td>
<td>3</td>
<td>3</td>
<td>100</td>
<td>8</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>Feral cat</td>
<td>Felis catus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Southern brown bandicoot</td>
<td>Isoodon obesulus</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tammar wallaby</td>
<td>Notamacropus eugenii</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Western grey kangaroo</td>
<td>Macropus fuliginosus</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bush rat</td>
<td>Rattus fuscipes</td>
<td>27</td>
<td>22</td>
<td>81</td>
<td>6</td>
<td>5</td>
<td>83</td>
</tr>
<tr>
<td>Short-beaked echidna</td>
<td>Tachyglossus aculeatus</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Common brushtail possum</td>
<td>Trichosurus vulpecula</td>
<td>9</td>
<td>4</td>
<td>44</td>
<td>15</td>
<td>11</td>
<td>73</td>
</tr>
<tr>
<td>Rosenberg's goanna</td>
<td>Varanus rosenbergi</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>58</td>
<td>29</td>
<td>50</td>
<td>42</td>
<td>28</td>
<td>67</td>
</tr>
<tr>
<td>b.) All six rounds of baiting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shy heathwren</td>
<td>Calamanthus cauta</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Grey shrikethrush</td>
<td>Colluricincla harmonica</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Australian raven</td>
<td>Corvus coronoides</td>
<td>32</td>
<td>32</td>
<td>100</td>
<td>45</td>
<td>45</td>
<td>100</td>
</tr>
<tr>
<td>Feral cat</td>
<td>Felis catus</td>
<td>2</td>
<td>1</td>
<td>50</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Southern brown bandicoot</td>
<td>Isoodon obesulus</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>3</td>
<td>43</td>
</tr>
<tr>
<td>Tammar wallaby</td>
<td>Notamacropus eugenii</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>29</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Western grey kangaroo</td>
<td>Macropus fuliginosus</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>House mouse</td>
<td>Mus musculus</td>
<td>7</td>
<td>7</td>
<td>100</td>
<td>6</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>Bush rat</td>
<td>Rattus fuscipes</td>
<td>113</td>
<td>108</td>
<td>96</td>
<td>56</td>
<td>51</td>
<td>91</td>
</tr>
<tr>
<td>Kangaroo Island dunnart</td>
<td>Sminthopsis fuliginosus atkeni</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Short-beaked echidna</td>
<td>Tachyglossus aculeatus</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Common brushtail possum</td>
<td>Trichosurus vulpecula</td>
<td>63</td>
<td>56</td>
<td>89</td>
<td>108</td>
<td>98</td>
<td>91</td>
</tr>
<tr>
<td>Rosenberg's goanna</td>
<td>Varanus rosenbergi</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>261</td>
<td>204</td>
<td>78</td>
<td>285</td>
<td>207</td>
<td>73</td>
</tr>
</tbody>
</table>
Table 3. The percentage of baits taken by all species that approached the bait stations in August and November for both the first round of baiting and all six rounds of baiting.

<table>
<thead>
<tr>
<th>Common name</th>
<th>Scientific name</th>
<th>First round</th>
<th>All rounds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Winter</td>
<td>Summer</td>
</tr>
<tr>
<td>Shy heathwren</td>
<td>Calamanthus cauta</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Grey shrikethrush</td>
<td>Colluricincla harmonica</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Australian raven</td>
<td>Corvus coronoides</td>
<td>6</td>
<td>28</td>
</tr>
<tr>
<td>Feral cat</td>
<td>Felis catus</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Southern brown bandicoot</td>
<td>Isoodon obesulus</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tammar wallaby</td>
<td>Macropus eugenii</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Western grey kangaroo</td>
<td>Macropus fuliginosus</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>House mouse</td>
<td>Mus musculus</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bush rat</td>
<td>Rattus fuscipes</td>
<td>47</td>
<td>17</td>
</tr>
<tr>
<td>Kangaroo Island dunnart</td>
<td>Sminthopsis fuliginosus aitkeni</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Short-beaked echidna</td>
<td>Tachyglossus aculeatus</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Common brushtail possum</td>
<td>Trichosurus vulpecula</td>
<td>9</td>
<td>38</td>
</tr>
<tr>
<td>Rosenberg’s goanna</td>
<td>Varanus rosenbergi</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Unknown</td>
<td>Unknown</td>
<td>38</td>
<td>7</td>
</tr>
</tbody>
</table>
Table 4: The number of individuals with whisker samples where Rhodamine B banding was, or was not, visible, split between the two trial periods (August and November) pooled across all study four sites.

<table>
<thead>
<tr>
<th>Common name</th>
<th>Species</th>
<th>August</th>
<th>November</th>
<th>Proportion of individuals with bands (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Number of individuals</td>
<td>Number of individuals</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>without bands</td>
<td>with bands</td>
<td></td>
</tr>
<tr>
<td>Western pygmy-possum</td>
<td>Cercartetus concinnus</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Little pygmy-possum</td>
<td>Cercartetus lepidus</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Southern brown bandicoot</td>
<td>Isoodon obesulus</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>House mouse</td>
<td>Mus musculus</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Bush rat</td>
<td>Rattus fuscipes</td>
<td>34</td>
<td>48</td>
<td>19</td>
</tr>
<tr>
<td>Common brushtail possum</td>
<td>Trichosurus vulpecula</td>
<td>-</td>
<td>18</td>
<td>2</td>
</tr>
</tbody>
</table>
SUPPLEMENTARY MATERIAL

Table S1. Equations used to calculate how much bait a species could use before reaching its LD50

<table>
<thead>
<tr>
<th>Description</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount of 1080 for LD50</td>
<td>(Body weight)*(LD50 mg kg⁻¹)</td>
</tr>
<tr>
<td>Weight of bait for LD50</td>
<td>((Amount of 1080 for LD50)/ 4.5 mg amount of 1080 in bait)*15g dry bait weight</td>
</tr>
<tr>
<td>Number of baits for LD50</td>
<td>Weight of bait for LD50/15g dry bait weight</td>
</tr>
</tbody>
</table>