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Abstract 15 

Globalization has facilitated the emergence and spread of novel pathogens, representing a major 16 

conservation challenge. The amphibian disease chytridiomycosis, caused by the fungal pathogen 17 

Batrachochytrium dendrobatidis, epitomizes this unprecedented threat, being responsible for 18 

declines and extinctions of amphibians worldwide. Chytridiomycosis has had both immediate 19 

catastrophic impacts during initial epidemics, as well as more variable, ongoing effects as the 20 

pathogen transitions to endemicity in its new distribution. Where B. dendrobatidis is now 21 

endemic, effective management actions are needed to prevent further extinctions of species. Yet, 22 

after nearly 20 years of research, management solutions remain rare or largely untested. Here, we 23 

highlight the potential for mitigation strategies focused on the environmental part of the host-24 

pathogen-environment triangle to facilitate coexistence with the pathogen, using an extensive 25 

literature review to demonstrate that environmental conditions and demographic processes can 26 
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strongly mediate the impact of B. dendrobatidis, and the capacity of amphibian populations to 27 

withstand disease-associated mortality. In particular, novel management approaches to achieve 28 

coexistence could focus on manipulating environmental conditions to decrease suitability for B. 29 

dendrobatidis and/or increase demographic resilience to disease-associated mortality. Such 30 

strategies include translocation to, or creation of, environmental refuges, and habitat 31 

manipulation to increase recruitment and offset elevated adult mortality. We argue that 32 

responding to chytridiomycosis requires a conceptual readjustment of our baselines to recognize 33 

that endemic B. dendrobatidis infection is the ‘new normal’ in surviving populations of many 34 

susceptible amphibian species. We conclude with recommendations for research and 35 

management actions that can help achieve coexistence of amphibian species susceptible to B. 36 

dendrobatidis.  37 

Key words: adaptive management; amphibian conservation; Batrachochytrium dendrobatidis; 38 

chytrid fungus; wildlife disease 39 
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Highlights 41 

• Chytridiomycosis continues to cause amphibian declines decades after its emergence 42 

• Some amphibians coexist with chytridiomycosis through a diverse range of responses 43 

• The ranges of many susceptible species have contracted to environmental refuges 44 

• A focus on coexistence rather than eradication could improve conservation outcomes 45 

• Environmental manipulation may facilitate coexistence with chytridiomycosis 46 

  47 
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1. Introduction 48 

The transition of emerging infectious pathogens to endemicity can provide unique insights into 49 

the epidemiology of wildlife disease, including the various pathways through which pathogens 50 

and hosts achieve coexistence. The last century provides numerous examples of the destructive 51 

power of pathogens introduced into naïve host populations, including avian malaria in passerine 52 

birds (Samuel et al., 2015), squirrel parapoxvirus (Tompkins et al., 2002), and white nose 53 

syndrome in bats (Leopardi et al., 2015). Rightfully, the devastating effects associated with 54 

epidemics have received much attention. However, the long-term ecological, demographic, 55 

behavioural and evolutionary responses of hosts to novel pathogens are deserving of equal focus. 56 

Many pathogens that are highly destructive outside of their native range coexist with host 57 

populations within the pathogen’s native range (Tompkins and Begon, 1999), suggesting that 58 

there is potential for coexistence to develop in emerging host-pathogen systems. Uncovering 59 

mechanisms that underpin coexistence is of great interest for managing wildlife pathogens, and 60 

can reveal pathways through which managers may be able to expedite host-pathogen 61 

coexistence. 62 

The disease chytridiomycosis is a key driver of global amphibian declines (Lips, 2016). 63 

Chytridiomycosis is caused by infection with one of two fungal species, Batrachochytrium 64 

dendrobatidis (discovered in 1998, Berger et al., 1998; Longcore et al., 1999), and B. 65 

salamandrivorans (discovered in 2013, Martel et al., 2014). The global expansion of both 66 

Batrachochytrium pathogens – which originated in East Asia (O’Hanlon et al., 2018) – has been 67 

facilitated by humans, particularly through wildlife trade (Martel et al., 2014). Batrachochytrium 68 

dendrobatidis (hereafter Bd) is now found on all continents with amphibians, while B. 69 

salamandrivorans is currently invasive only in Europe, but there are major concerns about its 70 

potential introduction into the Americas (Martel et al., 2014).  71 

Disease theory predicts that emerging single-host pathogens can either transition to 72 

endemicity, or fade out after epidemic outbreaks (Lloyd-Smith et al., 2005). In contrast, 73 

emerging multi-host pathogens are unlikely to fadeout, and can persist long-term (Lloyd-Smith 74 

et al., 2005). The classic example of a persistent multi-host pathogen in the wildlife disease 75 

literature is avian malaria (caused by the blood parasite Plasmodium relictum) in Hawaii. Nearly 76 

a century after initial bird declines and extinctions in the 1920s, the pathogen is now endemic 77 
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and host responses range from high ongoing susceptibility to evolution of resistance with partial 78 

recovery and/or persistence in environmental refuges (Samuel et al., 2015). Similarly to avian 79 

malaria, Bd has a number of traits that make long term persistence of the pathogen in infected 80 

populations likely. First, Bd has an extremely broad host range, with infections reported in over 81 

700 amphibian species, as well as non-amphibian hosts (Lips, 2016). Second, Bd can persist in 82 

both non-declining amphibian reservoir hosts (Scheele et al., 2017b) and the environment 83 

(Johnson and Speare, 2005). Finally, Bd appears to be able to maintain high virulence post-84 

emergence (Voyles et al., 2018). These factors combined with the strong influence of 85 

environmental conditions on Bd pathogenicity (Lips, 2016), mean that species that have declined 86 

due to Bd epidemics have exhibited a range of trajectories, from extirpations, to ongoing 87 

declines, stabilization at lower density or even recovery (Scheele et al., 2017c).  88 

The overarching tenet of this paper is that the environmental component of the host-89 

pathogen-environment disease triangle (Scholthof, 2007) offers untapped management potential 90 

in the context of chytridiomycosis. We do not discount the importance of host-pathogen factors 91 

(namely host tolerance and resistance, vaccines or manipulation of host microbiota and evolution 92 

of reduced pathogen virulence), but these factors have received much attention elsewhere. 93 

Mitigation strategies based on the environmental part of the host-pathogen-environment triangle, 94 

on the contrary, have only recently emerged in the literature, yet could be widely applicable 95 

because environmental conditions can strongly mediate the impact of biotic threats (Scheele et 96 

al., 2017a, 2018a), and because most amphibian species are endangered by multiple threats, 97 

many of which may be managed to offset Bd impacts (Grant et al., 2016).  98 

To provide a foundation for the development of mitigation strategies focused on the 99 

environmental part of the host-pathogen-environment triangle, we review the literature on the 100 

context-dependent nature of host-pathogen dynamics in amphibian species that have experienced 101 

Bd-associated declines. Our synthesis identifies the crucial role of environmental context in 102 

shaping infection dynamics, and how host demographic responses and population processes can 103 

facilitate coexistence. New management approaches could achieve coexistence through: (1) 104 

manipulating environmental conditions to decrease the pathogenicity and/or virulence of Bd, or 105 

(2) bolstering population resilience to disease-induced mortality by facilitating compensatory 106 

mechanisms such as increased recruitment success and consistency, and/or reduced mortality 107 
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from other sources. In the final section of this paper, we provide research and management 108 

recommendations to guide actions that aim to secure the long-term conservation of species 109 

challenged by endemic Bd. We argue there is a need to update our baseline ecological knowledge 110 

of declining species to recognize that endemic Bd infection is the ‘new normal’ for many 111 

susceptible species (Mendelson et al., 2019 -This issue), and adjust our conservation and 112 

management goals accordingly. We highlight how such a shift can establish a new path for 113 

action, by refocussing on management opportunities and avoiding the inevitable failure of 114 

conservation actions that seek to eradicate Bd or return species to their previous state.  115 

 116 

2. Ecological responses to endemic Batrachochytrium dendrobatidis 117 

An extraordinarily broad range of mechanisms have been associated with amphibian persistence 118 

in the post-epidemic phase of Bd emergence, with host responses being species-specific and 119 

context dependent. Here, we describe the results of a targeted literature review of the ‘ecological’ 120 

(including demographic and behavioural) responses to endemic Bd infection among amphibian 121 

hosts and how these vary with environmental context (those interested in the role of host-122 

immune responses and shifts in pathogen virulence in coexistence are referred to the 123 

Supplementary Material for brief overviews of both processes). We focus on susceptible 124 

amphibian species that experienced declines during initial epidemics, and for which endemic 125 

chytridiomycosis continues to be a source of host mortality. For a full list of papers consulted, 126 

see Appendix A in the Supplementary Material. We note here that the available literature is 127 

biased towards research conducted in the U.S.A., Australia and Western Europe. In each section 128 

below, we describe the processes associated with amphibian persistence with Bd and outline the 129 

management implications and associated opportunities.  130 

 131 

2.1. Contraction to geographic refuges 132 

Following the emergence of Bd, susceptible amphibian species may experience a contraction to 133 

geographic refuges, defined here as a proportion of a host species’ range where Bd is absent (Fig. 134 

1). Although not technically a mechanism of coexistence, as the pathogen is absent, geographic 135 
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refuges are important because they allow host persistence in environments that would be suitable 136 

for the pathogen if it was present. For example, the green and golden bell frog (Litoria aurea) 137 

has experienced major declines across eastern Australia, but has persisted at high abundance on 138 

an off-shore island that is environmentally and climatically suitable for Bd (Stockwell et al., 139 

2015a). Although geographic refuges can support crucial populations of declining species, their 140 

long-term viability is threatened by the possible introduction of Bd. Management of geographic 141 

refuges must focus on preventing Bd introduction, through the implementation of strict 142 

biosecurity protocols (see Phillott et al., 2010). Management of populations in geographic 143 

refuges may need to address additional issues, such as negative effects of geographic isolation 144 

and increased vulnerability to environmental or demographic stochasticity.  145 

 146 

2.2. Contraction to climatic and environmental refuges 147 

Far more common than geographic refuges is the contraction of amphibian species to climatic or 148 

environmental refuges (Figs. 1, 2). These are areas of a species’ distributions that are climatically 149 

unsuitable for Bd, or where environmental conditions are either less favourable for Bd growth or 150 

more favourable for amphibian immunocompetence; leading to lower pathogenicity and/or 151 

virulence of Bd, with corresponding reductions in disease-induced mortality rates (Doddington et 152 

al., 2013; Puschendorf et al., 2011). In laboratory conditions, optimal growth of Bd occurs at 153 

temperatures ranging from 17 to 25 °C, and on either side of this range (5–16°C and 26–28 °C) 154 

growth is slow (Piotrowski et al., 2004). Prolonged exposure to temperatures above 30°C kills 155 

Bd and mortality is rapid at higher temperatures (e.g., 4 h at 37°C) (Johnson et al., 2003; 156 

Piotrowski et al., 2004). In addition to temperature limits on Bd occurrence, the fungus is not 157 

tolerant of desiccation, being killed by 1h of drying (Johnson et al., 2003). Therefore, areas 158 

where climatic conditions are outside the optimum for Bd persistence represent possible climate 159 

refuges, facilitating the persistence of susceptible species. The strong thermal and moisture 160 

constraints on Bd growth and survival likely underpin a global pattern of more severe amphibian 161 

declines in species restricted to upland (cool) areas, and wetter climates. For example, in Costa 162 

Rica and eastern Australia, there has been a marked pattern of severe amphibian declines in cool, 163 

moist upland regions, with many species contracting to hotter and drier lowland sites that are less 164 
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conducive to Bd growth and survival (Fig. 2) (Puschendorf et al., 2009; Puschendorf et al., 165 

2013).  166 

In addition to climate refuges, local environmental conditions can be unfavourable for Bd 167 

growth and survival, or facilitate the host’s immune response, allowing amphibian hosts to 168 

coexist with endemic Bd. These environmental refuges occur on smaller scales than climate 169 

refuges, and frequently exist within a broader climatic and environmental context that is 170 

favourable for Bd. For example, reduced rates of Bd infection and mortality have been found in 171 

lowland leopard frog (Lithobates yavapaiensis) populations in North America that occupy 172 

thermal springs where the water temperatures exceed 30oC (Forrest and Schlaepfer, 2011; 173 

Savage et al., 2011). However, temperatures need not be close to the pathogen’s upper tolerance 174 

for small-scale thermal refuges to occur. Heard et al. (2014) documented a strong negative 175 

relationship between water temperature (from 13-27 °C) and infection prevalence and intensity 176 

among growling grass frogs (Litoria raniformis) in Australia, and subsequently demonstrated 177 

that frog populations in relatively warm wetlands with low infection prevalence have 178 

substantially higher annual probabilities of population persistence (Heard et al., 2015). Heard et 179 

al. (2014) found the same for slightly saline wetlands, due to the negative effect of salinity on the 180 

prevalence of infections and disease-associated mortality (see also Stockwell et al., 2015b). The 181 

European midwife toads (Alytes spp.) provide further examples of environmental refuges. A 182 

population of the Mallorcan midwife toad (A. muletensis) occupying a narrow canyon is 183 

declining because stream water temperature is cool and more conducive to Bd, while a nearby 184 

population occupying a wider canyon is stable due to higher water temperatures, limiting fungus 185 

performance (Doddington et al., 2013). Similarly, in the Pyrenees, Bd has a wide elevational 186 

distribution in populations of the European midwife toad (A. obstetricans), yet disease outbreaks 187 

and mortality are observed only in a small elevational range, corresponding with optimal 188 

conditions for Bd (Walker et al., 2010).  189 

Environmental refuges also can occur as a result of spatially variable biotic processes that 190 

influence Bd occurrence and abundance. For example, Bd prevalence and infection intensity in 191 

French Pyrenean populations of A. obstetricans are influenced by the abundance of micro-192 

predators that consume Bd zoospores (Schmeller et al., 2013). Similarly, the distribution of non-193 

susceptible reservoir hosts also can produce environmental refuges. Amphibians vary in their 194 
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susceptibility to Bd, meaning that those species that can persist in high abundance despite 195 

infections can amplify the prevalence of the fungus in sympatric, highly susceptible species 196 

(Brannelly et al., 2018). Environmental refuges may then exist for susceptible species under 197 

conditions that exclude the reservoir hosts. For example, the northern corroboree frog 198 

(Pseudophryne pengilleyi) has been extirpated from sites where the non-declining common 199 

eastern froglet (Crinia signifera) – a reservoir host – occurs in high abundance (Scheele et al., 200 

2017b). Refuges for P. pengilleyi occur where habitat conditions are unfavourable for C. 201 

signifera, and the resulting low prevalence of Bd allows for P. pengilleyi persistence (Scheele et 202 

al., 2017b).  203 

While the concept of refuges is not new to conservation, there are very few examples of 204 

this concept being integrated into the conservation of disease-threatened amphibians. However, 205 

significant management implications (and opportunities) arise from the occurrence (and 206 

recognition) of refuges from Bd. For example, where a substantial proportion of the original 207 

range of a declining species occurs in climatic refuges, active management of these populations 208 

may not be needed. Even in cases where species have lost a large portion of their former 209 

distribution, population stability in climatic refuges should be an important criteria for 210 

prioritizing conservation funding, as focusing management and monitoring efforts on such 211 

species may divert funds away from other species in more immediate need. Conversely, for 212 

species restricted to small-scale climatic or environmental refuges, it is crucial to locate these 213 

areas with thorough surveys of the historic range and to quantify the mechanism(s) underpinning 214 

population persistence (see section 3.1).  215 

Examining underlying mechanisms is important in evaluating whether remnant 216 

populations are likely to be viable or whether active management is needed (see section 3.1). A 217 

thorough understanding of refuge characteristics also can inform searches for other refuges, and 218 

niche-based models may be used to aid the identification of sites where highly endangered 219 

species could be (re)established (Guisan et al., 2006). An illustrative example of the 220 

effectiveness of conservation focused on refuge characteristics is the case of the critically 221 

endangered armoured mist frog (Litoria lorica) in northern Australia. Initial survey efforts 222 

focused on examining mechanisms underpinning population persistence in the environmental 223 

refuge where the species was rediscovered (Puschendorf et al., 2011). Subsequent efforts then 224 
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focused on surveying other potential refuges with similar characteristics, and when no further 225 

populations were found, a translocation was used to establish a second population at one of these 226 

refuge sites (Hoskin and Puschendorf, 2014).  227 

For other species that remain more widely distributed, the stability of population 228 

networks may be reliant on particular environmental refuges that act as crucial source 229 

populations (Heard et al., 2015; see further below). Such refuges must be targets for protection 230 

from other threats, and should be the focus of active management that either enhances or 231 

maintains their refugial properties (Heard et al., 2018). Similarly, where created habitat can be 232 

engineered to have refugial properties from Bd, habitat creation schemes may reduce extinction 233 

risk significantly (Heard et al., 2018). Finally, populations in refuges are particularly important 234 

to monitor for several reasons. First, refuges may not represent static entities and may be 235 

vulnerable to changing climatic conditions or the introduction of new Bd lineages. Second, 236 

certain types of refuges may play a potentially important role in the long-term evolution of 237 

disease tolerance and resistance. When conditions are optimal for Bd, slight natural variation in 238 

resistance – upon which natural selection could act – is likely to be swamped by the very high 239 

virulence (and associated mortality) of Bd. However, in environmental refuges where Bd occurs 240 

but disease associated mortality rates are lower, slight fitness advantages could be selected for. 241 

Research and monitoring of populations in refuges is therefore important for understanding some 242 

of the mechanisms allowing long-term coexistence of amphibians and endemic Bd, developing 243 

and refining management interventions (see section 3.1), and ensuring populations are not 244 

experiencing slow, cryptic declines as described by Valenzuela-Sánchez et al. (2017).  245 

 246 

2.3. Changes in amphibian habitat use 247 

Small-scale habitat selection may facilitate coexistence of susceptible species with Bd under 248 

particular environmental conditions. In tropical northern Australia, Rowley and Alford (2013) 249 

showed in three frog species, that an individuals' probability of infection in the wild exhibited a 250 

strong negative correlation with time spent above 25oC. Similarly, Richards-Zawacki (2010) 251 

reported that golden frogs (Atelopus zeteki) modified their thermoregulatory behaviour during a 252 

Bd outbreak in Panama, with a significant increase in mean body temperature across the 253 
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population. Examining how temperature influences infection dynamics, Greenspan et al. (2017), 254 

demonstrated that frogs exposed daily to temperatures of 29oC for four hours (mimicking 255 

temperature profiles obtained from wild frogs) experienced significant decreases in infection 256 

intensity and mortality compared to frogs kept at a constant 18oC. From a management 257 

perspective, the fact that warmer body temperatures, even for short periods, can reduce infection 258 

risk opens the opportunity to trial management actions that manipulate habitat to facilitate 259 

thermoregulatory response, or provision of artificially warm micro-refuges where infected 260 

individuals could clear infection in the wild. In the case of habitat manipulations, modifications 261 

should be small-scale and implemented with appropriation caution to prevent unintended 262 

consequences. The potential of such methods is highlighted by research on endemically infected 263 

populations of common mist frogs (Litoria rheocola), which found that Bd infection prevalence 264 

declined after a tropical cyclone reduced stream shading by trees, increasing insolation and 265 

thermoregulatory opportunities for these frogs (Roznik et al., 2015b). 266 

 267 

2.4. Altered population dynamics 268 

Populations and population networks are stable if there is a balance between gains and losses 269 

(Schmidt et al., 2005). Even within climatic and environmental refuges, endemic Bd may drive 270 

population declines, because it continues to represent a significant source of both juvenile and 271 

adult mortality. For example, in eastern Australia, Bd infections remain a significant source of 272 

adult mortality for at least six hylid frog species that declined sharply during initial epidemics 273 

(Litoria aurea, L. pearsoniana, L. raniformis, L. rheocola, L. spenceri and L. verreauxii alpina), 274 

although at least some of these species have stabilized in climatic and environmental refuges 275 

over the last two decades (Grogan et al., 2016; Heard et al., 2014; Hunter et al., 2018; Murray et 276 

al., 2009; Pickett et al., 2014; Scheele et al., 2015). Likewise, Bd infections reduce annual 277 

survival rates of boreal toads (Bufo boreas) by between 31–42% in the Rocky Mountains of 278 

western U.S.A., leading to slow, ongoing population declines (Pilliod et al., 2010). In contrast to 279 

the Australian examples, however, where populations persist at lower elevations, high-elevation 280 

sites represent climatic refuges for B. boreas, due to temperature regimes that are below the 281 

thermal optimum for Bd growth (Mosher et al., 2018).  282 
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Amphibian populations such as these, which are subject to ongoing disease-induced 283 

mortality, can experience severe age structure truncation. Significant adult mortality leads to left-284 

biased age structures, numerically dominated by juveniles, sub-adults and young adults. Scheele 285 

et al. (2016) provide a striking example in alpine tree frog (Litoria verreauxii alpina): 286 

populations with endemic Bd did not support individuals older than three years of age, while 287 

populations without Bd contained individuals up to seven years of age. Truncation of population 288 

age structure reduces population resilience and leads to increased sensitivity to both demographic 289 

and environmental stochasticity (Rouyer et al., 2012). For amphibian populations afflicted by Bd, 290 

in which survival rates are already depressed, spikes in mortality or recruitment failure 291 

associated with stochastic events can drive local extinction (Heard et al., 2015). Adult longevity 292 

among some species afflicted by Bd may fall to as low as one to two years post metamorphosis, 293 

allowing individual participation in only a single breeding season (Heard et al., 2012; Lampo et 294 

al., 2012; Pickett et al., 2014; Scheele et al., 2016), or no breeding at all in species that take 295 

longer to reach maturity (see section 3.1). Under this extreme scenario, formerly iteroparous 296 

species are pushed towards semelparity, and recruitment failure for even a single year may lead 297 

to local extinction (Scheele et al., 2016). Aquatic-breeding amphibians are particularly 298 

susceptible in this regard, with catastrophic tadpole mortality and recruitment failure being a 299 

common occurrence (Alford and Richards, 1999).  300 

Three important consequences arise from these changes in demography and population 301 

dynamics in Bd-afflicted species. First, the persistence of Bd-challenged populations is likely to 302 

be increasingly dependent on consistent recruitment. Second, population networks may be 303 

destabilized. Third, life history traits may come under strong selection pressure in response to 304 

altered mortality schedules. We discuss each of these considerations in more detail below.  305 

Due to increased adult mortality, Bd-challenged populations are likely to display greater 306 

reliance on consistent metamorph production and survival of post-metamorphic juveniles for 307 

regional persistence. Muths et al. (2011) provide an example of a compensatory response in a 308 

population of B. boreas, in which high and consistent recruitment facilitated coexistence with Bd 309 

despite Bd-induced mortality of adults. Scheele et al. (2015) similarly documented compensatory 310 

recruitment in L. verreauxii alpina populations and Spitzen-van der Sluijs et al. (2017) reported 311 

analogous results for yellow-bellied toads (Bombina variegata). Examples such as these allow us 312 
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to infer that population networks of species afflicted by Bd may rely heavily on ‘source’ 313 

populations where recruitment is high and consistent through time. In turn, we may infer that 314 

habitat patches with features that facilitate recruitment stability may become crucial for 315 

persistence. An example is the reliance of L. verreauxii alpina on permanent ponds in temperate 316 

Australia, despite the largest populations historically occurring in ephemeral wetlands (Scheele 317 

et al., 2016). This pattern may be replicated in at least two other frog species (L. aurea and L. 318 

raniformis) in eastern Australia that are afflicted by Bd, for which populations occupying 319 

permanent wetlands have much higher rates of persistence (e.g. Heard et al., 2013; Valdez et al., 320 

2015).  321 

Heightened adult mortality in Bd-afflicted populations is likely to destabilize the 322 

dynamics of population networks. Many amphibian species display relatively high rates of local 323 

extinction (due to their inherent sensitivity to environmental stochasticity, as above), and rely on 324 

similarly high rates of population recolonization for regional persistence (Hecnar and M'Closkey, 325 

1996). However, high recolonization rates require high densities of populations and source 326 

populations which produce emigrants, given the generally sharp decay in dispersal rates with 327 

distance in amphibians (Smith and Green, 2005). Increased rates of local extinction induced by 328 

Bd, coupled with lower densities of populations and greater sensitivity to recruitment failure, can 329 

unravel these dynamics. For example, Heard et al. (2015) used simulations to demonstrate that 330 

metapopulations of their study species (L. raniformis) could rapidly collapse if environmental 331 

refuges from Bd and adequate connectivity among populations were not maintained.  332 

Increased mortality in Bd-challenged populations has been associated with earlier host 333 

maturation, as has been demonstrated in L. verreauxii alpina in eastern Australia (Scheele et al., 334 

2017d). Increased extrinsic mortality favours greater allocation of resources to early reproduction 335 

as a means of increasing the chance of reproducing before death (Stearns et al., 2000). Whether 336 

earlier maturation in Bd-challenged amphibian populations represents phenotypic plasticity (in 337 

response to altered resource dynamics) or an evolutionary response remains unclear, although 338 

both mechanisms could operate in concert (Scheele et al., 2017d). Further, a number of studies 339 

have reported increased energy allocation to reproduction in response to Bd infection. For 340 

example, Bd-infected male frogs appear to call more intensely than uninfected males (An and 341 
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Waldman, 2016; Roznik et al., 2015a). Such responses highlight the diverse range of processes 342 

acting in populations with endemic Bd. 343 

Recognizing changes in population dynamics arising from endemic Bd has tangible 344 

outcomes for management (see section 3.1). As alluded to above, habitat-based management that 345 

focusses on reducing susceptibility to recruitment failure may be vital, particularly when the 346 

capacity to offset high rates of disease-induced mortality is minimal. Scheele et al (2016) 347 

provides a good example, showing that permanent wetlands are now crucial refuges for L. 348 

verreauxii alpina persistence and the consequent value of artificial wetlands for the conservation 349 

of this species.Similarly, Heard et al. (2018) simulated the capacity of wetland creation to 350 

mitigate the impacts of Bd on L. raniformis metapopulations in southern Australia, by increasing 351 

the number of environmental refuges from Bd in the network, and increasing both 352 

metapopulation size and connectivity (where the latter stems from greater densities of 353 

populations in the network and lower inter-patch distances, increasing the number of immigrants 354 

across the system). Their work demonstrates that such schemes could markedly reduce 355 

metapopulation extinction risk for Bd-challenged species. Lastly, for populations dependent on 356 

compensatory recruitment, we should recognize their increased vulnerability to habitat 357 

degradation (particularly the factors that determine production of metamorphs), short-term 358 

resource shortages and climatic variability (Spitzen-van der Sluijs et al., 2017).  359 

Investigating how habitat conditions influence recruitment and population growth rates, 360 

and subsequently compensatory capacity, could present managers with novel management 361 

options. For example in California, Knapp et al. (2016) showed that reduced pressure from 362 

introduced predatory fish was partially responsible for the recovery of the yellow-legged frog 363 

(Rana sierra) despite the continued impacts associated with Bd, due to the resulting increase in 364 

tadpole and metamorph survival rates. With invasive predators being key drivers of reproductive 365 

failure for numerous amphibian species (particularly fish; Knapp and Matthews, 2000), 366 

management that delivers predator-free breeding sites (either by their construction or by 367 

elimination from already invaded sites) could prove a highly effective approach for conserving 368 

disease-challenged populations.  369 

 370 
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3. Key steps for managing amphibian species threatened by endemic 371 

chytridiomycosis 372 

Batrachochytrium dendrobatidis poses a major challenge to the management of amphibian 373 

populations. Despite recognition of the problem, there has been very little progress on mitigating 374 

the impact of chytridiomycosis and stabilizing declining species in the wild (Garner et al., 2016; 375 

Scheele et al., 2014b). More broadly, effective management of wildlife pathogens has proven 376 

elusive in a diverse range of contexts (Langwig et al., 2015). In this review, we examined 377 

ecological factors that contribute to the coexistence of susceptible amphibian species with 378 

endemic Bd. This provides a foundation to develop mitigation strategies based on the 379 

environmental part of the host-pathogen-environment triangle. This is in contrast to previous 380 

efforts that have focused directly on either the hosts and/or the pathogen. We propose the 381 

development and trialling of new management approaches that focus on achieving coexistence 382 

through either: (1) manipulating environmental conditions to decrease the pathogenicity and/or 383 

virulence of Bd, or (2) bolstering population resilience to disease-induced mortality, by 384 

facilitating compensatory mechanisms such as increased recruitment success and consistency, 385 

and/or reduced mortality from other sources. These approaches are likely to be widely applicable 386 

as environmental conditions can strongly mediate the impact of biotic threats (Scheele et al., 387 

2017a, 2018a), and because most amphibian species are endangered by multiple threats (Grant et 388 

al., 2016). Below we outline four key steps that involve a mixture of research and management 389 

that can help achieve coexistence of susceptible amphibian species with Bd.  390 

 391 

3.1. Key steps towards achieving coexistence of declining amphibian species with Bd  392 

1. Define clear management objectives. Identifying clear, quantifiable management objectives is 393 

a fundamental initial step. Objectives must be clearly linked to conservation status, but tightly 394 

defined in terms of demographic responses and timelines (for example, reduce rate of decline by 395 

10% over five years, increase occupancy by 20% over 10 years). Objectives must be realistic 396 

under legal and financial constraints and should be developed with input from scientists, 397 

managers, and stakeholders (Converse and Grant, 2019 - This issue; Gerber et al., 2018).  398 
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2. Gather detailed information on species’ contemporary distribution and status, recognizing that 399 

baselines have shifted. As outlined in the preceding sections, the emergence of Bd has 400 

fundamentally reshaped the ecology of many species, demonstrating that the realized niche of 401 

species is not a fixed entity: it changes as the biotic context changes. As such, management must 402 

be informed by up-to-date information on species ranges (Scheele et al., 2014a). Additionally, 403 

the utility of information on species ecology, such as longevity or annual survival rates, collected 404 

before the emergence of Bd should be re-evaluated as it may not reflect the current reality with 405 

endemic Bd. The phenomenon of shifting baselines – where the former abundance or distribution 406 

of a species prior to its decline is not recognized, and the current greatly reduced state is 407 

perceived as ‘normal’ (Pauly, 1995) – is highly relevant to many amphibian species that have 408 

declined due to Bd. There are two management considerations arising from shifting baselines. 409 

First, for declines that occurred decades ago, there may be a failure to appreciate the diversity of 410 

habitat across which the species formally occurred, unnecessarily restricting the scope of 411 

management. Second, in the context of recent declines, failure to shift baselines could result in 412 

poorly targeted management that ignores the new reality of endemic Bd.  413 

3. Investigate mechanism(s) underpinning coexistence of populations with Bd. For susceptible 414 

species that persist in some locations, it is important to investigate Bd-host dynamics to evaluate 415 

risk of extinction, the mechanisms facilitating coexistence, and if required, guide the 416 

development of appropriate management actions. This information can be used to model a range 417 

of scenarios to best target management interventions, at both the population and network scale. 418 

Possible management strategies include either increasing geographic availability of 419 

environmental conditions that allow a species to persist with Bd (habitat creation or assisted 420 

colonization), and/or managing interacting factors to allow species to persist despite some level 421 

of mortality from Bd. This may entail a mix of both creative and pragmatic management 422 

initiatives. The former may involve small-scale interventions targeting particular mechanisms of 423 

disease mitigation (e.g., removal of reservoir hosts or creation of thermal refuges) and the latter 424 

may include management regimes that have historically been considered undesirable (e.g., 425 

canopy thinning, or livestock grazing of wetland edges to clear vegetation to increase insolation 426 

and reduce environmental suitability for Bd). We stress that habitat modifications should be 427 

highly targeted and small-scale, and should be conducted only after a thorough evaluation of 428 

potential unintended negative effects on both the target species, and other species in the 429 
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ecosystem. This requires assessing trade-offs. For example, canopy thinning may reduce 430 

environmental suitability for Bd, but could also remove key microhabitats for some species, 431 

altering trophic networks upon which they rely, or desiccate vital shelter sites.  432 

4. Implement management in an adaptive management framework. In all cases, the decision of 433 

what management to implement where will be taken under variable levels of uncertainty 434 

(Converse and Grant, 2019 - This issue; Smalling et al., 2019 - This issue; Sterrett et al., 2019 -435 

This issue). A range of decision support tools, such as structured decision making, can be used to 436 

improve decision making and identify sources of uncertainty (see case study by Converse et al., 437 

2017). Importantly, management actions should be treated as experiments and implemented in an 438 

adaptive framework, with iterative adjustments to improve efficiency (Canessa et al., 2019 - This 439 

issue).  440 

More broadly, management success is dependent on developing and maintaining teams that 441 

involve a range of contributors. For example, conservation programs that have prevented the 442 

extinction of several critically endangered frog species in Australia threatened by Bd 443 

(Pseudophryne pengilleyi, P. corroboree and L. spenceri) involve strong partnerships between 444 

government managers responsible for implementation of on-ground actions, government and 445 

non-government conservation organisations, and scientists from multiple disciplines. 446 

Importantly, partners are involved throughout the research-management cycle; from identifying 447 

management objectives and research questions to implementation and evaluation of management 448 

effectiveness (Scheele et al., 2018b).  449 

 450 

4. Conclusion  451 

The global emergence of Bd and subsequent amphibian declines represent an unprecedented 452 

conservation challenge. Never before has disease been identified as a key threat to such a large 453 

number and diverse range of species. While many species extinctions have already occurred 454 

during epidemics, the focus in many regions of the globe is now on preventing further losses as 455 

the pathogen transitions to endemicity. Our review highlights a diverse range of processes that 456 

can lead to coexistence with Bd. We argue, on the basis of these insights, that conservation 457 

actions for susceptible amphibians with endemic Bd should focus on manipulating environmental 458 
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conditions to decrease suitability for Bd, and/or facilitating demographic mechanisms that allow 459 

populations to compensate for Bd-associated mortality, and to persist despite it. Conserving 460 

species at risk of extinction requires a proactive mindset that accepts the new ecological reality 461 

of endemic Bd and uses an adaptive management framework to implement novel management 462 

approaches.  463 
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Figure captions 687 

 688 

Figure 1. Possible host responses to B. dendrobatidis, represented in two-dimensional 689 

environmental space, with reference to the environmental niche of both the host and the 690 

pathogen. Performance of both species declines with the decreasing density of shading within 691 

their niche. Host responses illustrated include contraction to geographic refuges and contraction 692 

to climatic and environmental refuges, including both environments unfavourable for the 693 

pathogen, as well as environments where amphibians have high compensatory capacity (e.g. an 694 

environment where the species can maintain a consistent, high recruitment rate to offset high 695 

adult mortality). An individual host species may show none or all of these responses across 696 

different parts of its range.  697 
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 698 

Figure 2. The growling grass frog (Litoria raniformis) experienced major declines in south-699 

eastern Australia, which were partly driven by Batrachochytrium dendrobatidis epidemics. 700 

Declines were most severe at higher elevations where environmental conditions are optimal for 701 

Bd and where the species has reduced capacity to tolerate elevated adult mortality. The species 702 

has now contracted to climatic and environmental refuges, although Bd-associated adult 703 

mortality remains high (Heard et al., 2014). This figure shows the spatial, elevational and 704 

climatic distribution of the species before and after the primary declines driven by Bd, where pre-705 

decline records are those prior to or very shortly after the arrival of Bd in Australia (1980 or 706 

before), and post-decline records are those from 2000 or later, by which time Bd is thought to 707 

have spread across the entire range of the species. Climate is represented here by annual mean 708 

winter temperatures. Data sourced from the Atlas of Living Australia (ala.org.au) and 709 

WorldClim (worldclim.org). 710 

  711 
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Supplementary Material 712 

Living with the enemy: facilitating amphibian coexistence with disease 713 

 714 

Supplementary text on the role of host-immune responses and shifts in pathogen virulence in 715 

achieving coexistence of susceptible amphibian species with Batrachochytrium dendrobatidis 716 

(hereafter Bd). 717 

 718 

Immune responses 719 

Evolution of increased amphibian host tolerance and resistance (immunity) can facilitate 720 

coexistence of amphibian species with Bd after a transition to endemicity. Emerging pathogens 721 

exert strong selection pressure in naïve host populations, and there are many examples of natural 722 

selection for increased host resistance resulting in pathogen-host coexistence (see review by 723 

Altizer et al., 2003). Reduced host susceptibility to Bd has been hypothesized as the mechanism 724 

underpinning the persistence or recovery of chytridiomycosis-affected amphibian species from 725 

the Americas (Knapp et al., 2016; Savage and Zamudio, 2011; Voyles et al., 2018) and Australia 726 

(Newell et al., 2013; Scheele et al., 2014). In the case of the recovery of the Sierra Nevada 727 

yellow-legged frog (Rana sierrae), Knapp et al. (2016) found that individuals from long-infected 728 

populations that were persisting with endemic Bd infection, were significantly less susceptible to 729 

infection than individuals from naïve populations. Similarly, documenting the recovery of 730 

several Panamanian species a decade after the initial outbreak of Bd, Voyles et al. (2018) found 731 

differences in skin secretions that inhibit Bd growth in frogs with different exposure histories, 732 

potentially representing a mechanism facilitating increased host resistance. Further, there is 733 

evidence for directional selection of major histocompatibility complex (MHC) alleles related to 734 

resistance in amphibian species, providing an additional putative evolutionary mechanism 735 

(Bataille et al., 2015; Savage and Zamudio, 2016).  736 

From a management perspective, efforts to increase host resistance could be achieved 737 

through: 1) augmentation (e.g. bolstering population abundance or managing other threats) of 738 

wild populations under natural selection for increased resistance until they become self-739 

sustaining (although this approach could compromise the selection process), and 2) identification 740 

of genetic markers for resistance combined with targeted selective breeding programs and/or 741 
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gene editing technologies (Garner et al., 2016). Currently, there are no successful examples of 742 

either of the abovementioned approaches, but both remain active areas of research. In the case of 743 

selective breeding, success is likely to be dependent on pre-existing variation in susceptibility 744 

between individuals within a species, while this obstacle could be overcome with gene editing 745 

approaches.  746 

 747 

Shifts in pathogen virulence 748 

Reduction in the virulence of Bd following a transition to endemicity could facilitate the 749 

coexistence with susceptible amphibian species. Reduced pathogen virulence has been reported 750 

in a number of other host-pathogen systems, such as myxomatosis in European rabbits 751 

(Oryctolagus cuniculus) (Altizer et al., 2003). However, while there is evidence for variation in 752 

virulence between different Bd lineages (O’Hanlon et al., 2018), there is currently no evidence 753 

for pathogen attenuation following a transition to endemicity (Voyles et al., 2018). For example, 754 

a comparison of historical and contemporary Bd isolates in Panama found no evidence for 755 

pathogen attenuation over the 11-13 years since initial epidemics (Voyles et al., 2018). These 756 

findings are in sharp contrast to rapid reductions in virulence reported in the laboratory with 757 

frequent passage of Bd (Refsnider et al., 2015). Maintenance of high virulence in the wild may 758 

be related to the broad host range of Bd (Olson et al., 2013) and large variation in susceptibility 759 

between sympatric amphibian species (Fisher et al., 2009), maintaining high selection pressure 760 

for virulence. From a management perspective, methods to manipulate Bd virulence have yet to 761 

be investigated.  762 
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researchers and managers considering implementing management approaches outlined in the 814 
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