
Belder, D.J., Pierson, J.C., Ikin, K., Lindenmayer, D.B. (2020). Revegetation and reproduction: do 
restoration plantings in agricultural landscapes support breeding populations of woodland birds? 
Oecologia, Vol. 192, Pp 865-878. 

The final publication is available at Springer via https://doi.org/10.1007/s00442-020-04611-1 

https://doi.org/10.1007/s00442-020-04611-1


1 

Revegetation and reproduction: Do restoration plantings in agricultural 

landscapes support breeding populations of woodland birds?  

Donna J. BelderAB, Jennifer C. PiersonAC, Karen IkinA, David B. LindenmayerABD 

A Fenner School of Environment and Society, The Australian National University, Canberra, 

ACT, Australia 2601. 

B National Environmental Science Program Threatened Species Recovery Hub, The 

Australian National University, Canberra, ACT, Australia 2601. 

C ACT Parks and Conservation Service, Environment, Planning and Sustainable Development 

Directorate, ACT Government, Canberra, ACT, Australia 2602. 

D Sustainable Farms, Fenner School of Environment and Society, The Australian National 

University, Canberra, ACT, Australia 2601. 

Correspondence: donna.belder@anu.edu.au / +61413535993 

Our research is novel in its use of a mechanistic approach to assess the effectiveness of 

restoration plantings as a conservation strategy. We highlight the value of small habitat 

patches for threatened and declining avifauna. 

Author contributions: DJB, JCP and DBL conceptualised the study and designed the 

experiment. DJB conducted the fieldwork, analysed the data, and wrote the manuscript. JCP, 

KI and DBL provided advice on data analysis and helped edit the manuscript.

https://www.editorialmanager.com/oeco/download.aspx?id=174245&guid=b62cf784-8809-4f82-8d3d-5230533c7f85&scheme=1
https://www.editorialmanager.com/oeco/download.aspx?id=174245&guid=b62cf784-8809-4f82-8d3d-5230533c7f85&scheme=1


2 

 

Abstract 1 

Restoration plantings are frequently occupied by native wildlife, but little is known about how 2 

planting attributes influence breeding by, and persistence of, fauna populations. We 3 

monitored breeding success of woodland birds in restoration plantings in a fragmented 4 

agricultural landscape in south-eastern Australia. We documented nest fate and daily nest 5 

survival (DSR) in plantings and remnant woodland sites. We analysed the influence on 6 

breeding success of patch attributes (size, shape, type) compared to other potentially 7 

influential predictors such as nest-site and microhabitat variables. We found that, in general, 8 

patch attributes did not play a significant role in determining breeding success for woodland 9 

birds. However, we examined a subset of species of conservation concern, and found higher 10 

DSR for these species in restoration plantings than in similarly-sized woodland remnants. We 11 

also found negative effects of patch size and linearity on DSR in species of conservation 12 

concern. The primary cause of nest failure was predation (91%). We used camera trap 13 

imagery to identify the most common nest-predators in our study sites: native predatory bird 14 

species, and the introduced red fox (Vulpes vulpes). Our findings are further evidence of the 15 

value of restoration plantings and small habitat patches for bird populations in fragmented 16 

agricultural landscapes. We recommend controlling for foxes to maximise the likelihood that 17 

restoration plantings and other woodland patches in Australia support breeding populations of 18 

woodland birds. More broadly, our study highlights the importance of taking a detailed, 19 

population-oriented approach to understanding factors that influence habitat suitability for 20 

fauna of conservation concern. 21 

 22 

Keywords: revegetation, temperate woodland, SLOSS, population dynamics 23 
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1 Introduction 24 

Habitat loss due to agricultural expansion is a key threat to biodiversity in many parts of the 25 

world (Maxwell et al. 2016; Egli et al. 2018). Ongoing loss of habitat in fragmented 26 

agricultural landscapes is making it increasingly difficult for many organisms to persist and 27 

maintain viable populations (Bennett et al. 2015; Haddad et al. 2015; Stanton et al. 2018). In 28 

an attempt to address these problems, there are increasing efforts to replant native vegetation 29 

in agricultural landscapes in many parts of the world. Ecological tree plantings – hereafter 30 

referred to as “restoration plantings” – collectively comprise millions of hectares of planted 31 

vegetation, costing billions of dollars to establish and maintain (Kimball et al. 2015; 32 

Crouzeilles et al. 2016). They are often implemented as a specific conservation strategy to 33 

replace lost habitat for threatened and declining fauna (McAlpine et al. 2016; Catterall 2018; 34 

Lindenmayer et al. 2018a). For example, in south-eastern Australia, over 90% of box-gum 35 

grassy woodland habitat has been lost (Thiele and Prober 2000), and woodland birds in this 36 

region have suffered substantial population declines (Barrett et al. 2007; Rayner et al. 2014). 37 

Consequently, woodland birds are frequently considered among the key beneficiaries of 38 

restoration plantings in south-eastern Australia (Belder et al. 2018). 39 

There is evidence suggesting that many species of woodland bird will readily occupy 40 

restoration plantings (Barrett et al. 2008; Lindenmayer et al. 2010; Debus et al. 2017). Studies 41 

examining woodland bird responses to restoration plantings typically use pattern data such as 42 

presence and abundance to infer habitat quality. Previous research has offered insights into 43 

colonisation and extinction patterns (Barrett et al. 2008; Mortelliti and Lindenmayer 2015), 44 

changes in bird community composition in plantings over time (Mac Nally 2008; 45 

Lindenmayer et al. 2016, 2018c; Debus et al. 2017), and occupancy trends relating to site 46 

type, habitat structure, and composition (Martin et al. 2011; Munro et al. 2011; Ikin et al. 47 

2018). However, do patch attributes have the same influence on breeding success as they do 48 
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on site occupancy? Few studies have investigated breeding success in restoration plantings, 49 

and little is known about the role of restoration plantings in supporting successful breeding by 50 

woodland birds. 51 

The presence of a species in a restoration planting does not necessarily mean that the site is 52 

supporting successful breeding of that species. Previous work has found that the relative 53 

abundance of woodland bird species is not necessarily correlated with their degree of 54 

breeding activity (Belder et al. 2019). For restoration plantings to support breeding 55 

populations of woodland birds, they must provide adequate resources and quality habitat to 56 

encourage persistence of individuals in a site, and to enable resident individuals to breed 57 

successfully (Arlt and Pärt 2007; Flockhart et al. 2016). This is an important outcome if 58 

restoration plantings are to be widely implemented as a conservation strategy (Ruiz-Jaen and 59 

Aide 2005). 60 

In this study, we focus on breeding success as an indicator of habitat quality in restoration 61 

plantings and remnant woodland patches. Breeding success is a key measure of the 62 

productivity and quality of a habitat patch (Hinsley et al. 2008; Milligan and Dickinson 63 

2016). By assessing whether successful breeding is occurring, we can begin to assess the 64 

extent to which a habitat patch is supporting the species that it is intended to help conserve. 65 

Moreover, identifying site attributes (e.g. size, shape) that best support successful breeding 66 

facilitates conservation planning, and has the potential to improve the cost-effectiveness of 67 

restoration plantings as a conservation strategy. 68 

It is also important to identify the most common causes of breeding failure in restoration 69 

plantings. For example, low nesting success could be due to an introduced predator that 70 

thrives in fragmented agricultural landscapes, such as the red fox (Vulpes vulpes) in Australia 71 

(Braysher 2017). If this is the case, then an otherwise good quality restoration planting may 72 
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never support species that are vulnerable to fox predation. However, this type of threat, once 73 

identified, could be readily addressed in management plans. Conversely, if nest predation is 74 

low but birds are abandoning nests or failing to fledge their young, it may indicate that 75 

resource limitation is the primary factor influencing breeding success and survival (Zanette et 76 

al. 2000). In this case, more detailed studies might establish what is driving resource 77 

limitation. For example, a lack of suitable nesting sites (exposure, competition), food 78 

shortage, or perhaps inefficient foraging strategies due to home ranges that are constrained by 79 

patch geometry or landscape context. 80 

1.1 Research objectives 81 

The primary aim of this study was to determine whether restoration plantings are able to 82 

support breeding populations of woodland birds. We used two different indicators of breeding 83 

success: nest fate and daily nest survival. Specifically, we posed the following three 84 

questions: 85 

Question 1. How does breeding success in restoration plantings compare to breeding success 86 

in remnant woodland patches? 87 

We compared breeding success (nest fate and daily nest survival) in restoration plantings and 88 

similarly-sized woodland remnants. We used larger woodland remnants, such as travelling 89 

stock reserves, as “reference” sites. Belder et al. (2019) found equal levels of breeding 90 

activity in restoration plantings and woodland remnants in the study area. We therefore 91 

predicted that breeding success in plantings would be similar to that in remnants. 92 

Question 2. Are patch attributes such as size, shape and type important determinants of 93 

breeding success in plantings and remnant woodland patches? 94 

We used a model selection approach to compare the influence of patch attributes (size, shape, 95 

type) with other variables that may influence breeding success, including nest-site variables 96 



6 

 

(distance to edge of patch, height off ground, concealment), and microhabitat variables (shrub 97 

cover, ground layer composition). A previous study by Belder et al. (2019) identified a 98 

negative relationship between patch size and breeding activity, and a positive relationship 99 

between planting age and breeding activity. We expected these findings to be reflected in our 100 

study of breeding success, and postulated that patch attributes would significantly influence 101 

breeding success.  102 

Question 3. What are the primary causes of nest failure in restoration plantings and 103 

woodland remnants? 104 

We sought to identify the reasons for nest failure in restoration plantings, and establish 105 

whether the same processes are responsible for nest failure in woodland remnants. We 106 

predicted that predation would be the leading cause of nest failure in all sites, as it is the 107 

primary driver of nest failure in most bird communities (Belder et al. 2018). We also sought 108 

to quantify whether major nest-predators differ between patch types. Based on research 109 

conducted in a similar study region (Okada et al. 2017), and a recent review of nest-predators 110 

in Australia (Fulton 2019), we expected the dominant predators of woodland bird nests to be 111 

predatory bird species, including ravens (Corvus spp), butcherbirds (Cracticus spp), and 112 

currawongs (Strepera spp). We also expected the eastern brown snake (Pseudonaja textilis) to 113 

be a common nest-predator in restoration plantings, as they have been detected more 114 

frequently in plantings than in similarly-sized woodland remnants in our study region 115 

(Cunningham et al. 2007). Snakes have been identified as important nest-predators in 116 

Australia (Fulton 2019) and internationally (Weatherhead and Blouin-Demers 2004). 117 

1.2 Approach 118 

Our study was conducted over two breeding seasons and used real, active bird nests to 119 

quantify breeding success and nest-predation. The majority of previous studies in Australian 120 

landscapes, including in our study region, have used indicators of breeding activity as a proxy 121 
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for breeding success (Barrett et al. 2008; Selwood et al. 2009; Mac Nally et al. 2010; Belder 122 

et al. 2019). While such indirect measures are an important step away from traditional 123 

diversity and abundance measures, they cannot accurately represent breeding success or 124 

identify reasons for breeding failure. We document, for the first time, nesting success, daily 125 

nest survival, and primary predators of woodland birds breeding in restoration plantings in a 126 

fragmented agricultural landscape. 127 

2 Materials and Methods 128 

2.1 Study area 129 

We conducted our study in the South-west Slopes bioregion of New South Wales, Australia. 130 

The region is part of Australia’s sheep-wheat belt and has been extensively cleared of native 131 

vegetation, with as little as 0.1% of the original temperate woodland remaining in intact 132 

condition (Thiele and Prober 2000). Remnant patches are predominantly white box 133 

(Eucalyptus albens) / yellow box (E. melliodora) / Blakely’s red gum (E. blakelyi) grassy 134 

woodland, a critically-endangered ecological community (NSW OEH 2016). Patches of red 135 

stringybark (E. macrorhyncha) woodland and mugga ironbark (E. sideroxylon) woodland are 136 

also present. 137 

2.2 Study sites 138 

We used spring bird survey data collected over 12 years (see Lindenmayer et al. 2018c) to 139 

select a subset of 21 long-term monitoring sites: 12 plantings (1.3-7.7 ha), six similarly-sized 140 

woodland remnants (2.1-5.8 ha), and three large, intact remnants (“reference” sites >44 ha) 141 

(Figure 1). Plantings were aged between 12 and 25 years. We attempted to control for the 142 

effects of competitive exclusion by selecting sites that did not have a history of occupancy by 143 

the noisy miner (Manorina melanocephala). Details regarding study site selection are 144 

described in Belder et al. (2019). 145 
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2.3 Nest searches 146 

We conducted fixed time-per-unit-area surveys (one hour per hectare) to locate nests in study 147 

sites over two breeding seasons. We completed two rounds of surveys (October and 148 

November) in 2015, and three rounds (September, October, November) in 2016. We searched 149 

sites systematically, with search areas designated by size and shape of sites. For sites with a 150 

total area less than 3 ha, we searched 1.3 ha within the site – this was equivalent to the size of 151 

the smallest site in the study. For sites with a total area greater than 3 ha, we searched 3 ha 152 

within the site. We surveyed block sites in a grid fashion, and linear sites along their length 153 

until we had searched the desired area (i.e. 1.3 ha or 3 ha). Due to the large geographic spread 154 

of sites, we were unable to completely randomise the order of site surveys during each round. 155 

However, we ensured that sites were not consistently surveyed at the same time of day. Sites 156 

were surveyed at any time of day from dawn to dusk, except during November 2016, when 157 

sites were surveyed only in the four hours post-sunrise and pre-sunset. 158 

2.4 Nest monitoring 159 

Once a nest was located, we used flagging tape to mark its position (near to but not at the nest 160 

to avoid attracting the attention of predators) and recorded its location using a handheld GPS. 161 

Depending on accessibility, we determined the status (i.e. the stage of development) of the 162 

nest at discovery by either manual inspection or through observations of parental behaviour. 163 

Some nests required multiple visits on different days to ascertain status. We conducted 164 

regular checks in person to verify status – every 7-10 days in 2015, and every 3-5 days in 165 

2016. We inspected nests manually or used a nest inspection tool (endoscopy-type camera for 166 

dome nests, and mirror on an extendible pole for open cup nests). For nests that were out of 167 

arm’s reach or could not be reached by extendible pole, we used behavioural observations to 168 

determine status. We observed nests for up to 30 minutes, or until we recorded activity at the 169 

nest and could verify the status. If we could not determine the status within the 30 minute 170 
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observation period, we repeated the observation at the next scheduled visit (3-5 days later in 171 

2016). If we did not record activity in three consecutive visits, we assumed the nest was no 172 

longer active. In the later stages of nesting (i.e. when the nest was estimated to be within 5 173 

days of fledging), we did not approach the nest, and used only behavioural observations to 174 

determine status. This was to minimise the risk of premature fledging. We considered a 175 

nesting attempt to have succeeded if at least one chick fledged. 176 

Where possible, we used fixed motion-sensing wildlife cameras to monitor nests, with the 177 

primary aim of detecting nest predation. We used a combination of Bushnell Trophy HD, 178 

UOVision UV565HD, and HCO ScoutGuard SG560K black flash cameras. All cameras are 179 

triggered by motion within the field of view. To reduce the incidence of false triggers (e.g. by 180 

wind-blown foliage), we set camera sensitivity to “low”. We were able to use nest cameras 181 

for nests at heights of up to 6 m. 182 

2.5 Nest site measurements and microhabitat surveys 183 

For all nests, we recorded a GPS location (accurate to the nearest 2 m), the height of the nest 184 

above ground, and the substrate (foliage, branch, woody debris, etc.) in which the nest was 185 

built. For nests in the 2016 breeding season, we also recorded concealment (visually 186 

estimated at a distance of approximately 10 m, and to the nearest 5%). We used ArcMap 187 

(ESRI 2011) to calculate the distance of each nest to the nearest patch edge. Where relevant, 188 

we also recorded the plant species in which nests were built.  189 

For nests in the 2016 breeding season, we collected microhabitat data around the nest site. We 190 

conducted microhabitat surveys when the nest was no longer active (either fledged or failed). 191 

At each nest, we used a tape measure to mark out a quadrat measuring 25 m along its 192 

diagonal, with the nest at its centre. The two diagonals were aligned north-south and east-193 

west. We visually estimated the proportion of ground cover (to the nearest 1%) and midstorey 194 
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cover (to the nearest 5%). We chose these microhabitat variables as multiple studies have 195 

documented their influence on site occupancy by woodland birds (Seddon et al. 2003; Antos 196 

and Bennett 2006; Montague-Drake et al. 2009; Munro et al. 2011). 197 

2.6 Statistical analyses 198 

We used a model selection approach (Burnham and Anderson 2004) to investigate the effects 199 

of patch-level, nest-level, and microhabitat variables on nest fate and daily nest survival 200 

(Table 1). For clarity, and to address inconsistencies with data collection between years, we 201 

modelled data only from nests monitored in 2016. We used generalised linear mixed effects 202 

regression models with study site as a random effect. Our response variables were nest fate 203 

(binary, where success = 0 and fail = 1), and daily nest survival (DSR). For nest fate and DSR 204 

analyses, we excluded nests for which the failure date was uncertain (to the nearest five days), 205 

most of which were classified as “abandoned”. We included these nests, along with those 206 

monitored in 2015, when calculating the total proportion of successful nests, and we report 207 

these results in the General findings section of our Results. Due to inherent differences in nest 208 

survival, we analysed dome-nesters and cup-nesters separately. We had sufficient data to 209 

individually examine one dome-nesting species: the superb fairywren (Malurus cyaneus), and 210 

one cup-nesting species: the willie wagtail (Rhipidura leucophrys). We also examined a 211 

subset of dome-nesting species of conservation concern (Appendix 1). We did not include 212 

nests of introduced species in our study.  213 

We used a comparative model selection approach, in which we modelled combinations (sets) 214 

of variables and used Akaike’s Information Criterion to determine which variables best 215 

predicted nest fate and DSR: 216 

1. Patch attributes: type, size (ha), shape (calculated as perimeter/width) 217 

2. Nest site attributes: height above ground, distance to edge of patch, concealment 218 
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3. Microhabitat variables: shrub cover and ground layer composition within 20 m of the 219 

nest. 220 

We included date of nest discovery (DATE) as an explanatory variable in all models, as 221 

preliminary analyses indicated that date within the breeding season was a significant influence 222 

on breeding success. For the first two sets of variables, we fitted models with the variables of 223 

interest plus interaction terms. For models including microhabitat variables, we did not 224 

include interaction terms. For daily nest survival model selection, we included a model that 225 

assumed constant nest survival (null model). We ranked candidate models using Akaike’s 226 

Information Criterion corrected for small sample sizes (AICc). We considered models with 227 

AICc ≤2 as top-ranked models (Burnham and Anderson 2004).  228 

When reporting DSR results, we provide both the sample size (n) and effective sample size 229 

(ness) (Rotella et al. 2004; Shaffer and Thompson 2007). Effective sample size is equal to the 230 

number of known days survived for each nest plus the number of intervals in which a nest 231 

failed (Rotella et al. 2004). For example, a nest that survived for 10 days and then failed 232 

between day 10 and day 13 contributes 11 to the study’s effective sample size. 233 

We used the packages ‘lme4’ (Bates et al. 2015) and ‘MuMIn’ (Bartoń 2018) in R version 234 

3.5.2 (R Core Team 2019) to fit and select models for FATE. For DSR calculation and model 235 

selection, we used Program MARK (White and Burnham 1999) via the R package ‘RMark’ 236 

(Laake 2003). To calculate model estimates and confidence intervals, we used the R packages 237 

‘dplyr’ (Wickham et al. 2019) for FATE and ‘RMark’ for DSR.  238 

Prior to fitting models, we checked all explanatory variables for multi-collinearity using 239 

variance inflation factors. We corrected for multi-collinearity by removing large reference 240 

sites from models that included both size and type (site type was significantly correlated with 241 

site size due to the comparatively large size of reference sites). That is, we included data only 242 
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from plantings and similarly-sized woodland remnants when modelling our response variable 243 

against site size and shape. We also scaled and centred our continuous predictor variables for 244 

generalised linear mixed modelling.  245 

3 Results 246 

3.1 General 247 

We located 324 woodland bird nests over the course of the two years of field study: 89 in 248 

2015, and 235 in 2016. Of these, we were able to successfully track the fate of 222 nests, or 249 

69% of the total number of nests. Of the nests that were tracked successfully, 129 were in 250 

plantings (12 sites), 45 were in remnants (six sites), and 48 were in large reference sites (three 251 

sites). We analysed nests from 24 different woodland bird species: 11 dome-nesters and 13 252 

cup-nesters (Appendix 1). 253 

Nests were predominately in the lower strata. Mean nest height was 2.2 m (SE=0.16 m). Cup 254 

nests in large reference sites were significantly higher on average than in restoration plantings 255 

and similarly-sized woodland remnants (p<0.0001). Site type did not influence nest height for 256 

dome nests. 257 

Mean nest success (succeed vs. fail) across all nest types was 33.8%. Success rates were 258 

29.6% for cup-nesters and 38.1% for dome-nesters (Figure 2). 259 

We calculated daily nest survival for 107 dome nests (ness = 2134) and 50 cup nests (ness = 260 

599) (Table 2). As the breeding season progressed, DSR decreased for dome-nesters but 261 

increased for cup-nesters (Figure 3). 262 

Dome-nesters frequently nested in kangaroo thorn (Acacia paradoxa), red box (Eucalyptus 263 

polyanthemos), Blakely’s red gum, and Phalaris aquatica (an introduced grass species). Plant 264 

species used frequently by cup-nesters included Blakely’s red gum, white box, and kangaroo 265 
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thorn. Both cup-nesters and dome-nesters nested most often in trees. Dome-nesters also 266 

frequently nested in shrubs and woody debris. Cup-nesters rarely built nests in shrubs or 267 

woody debris. 268 

We found that in linear sites that were oriented north-south, it was common for nests to be 269 

located on the eastern side of the site. This meant that nests were exposed to the warmth of 270 

the early morning sun but protected from overheating in the afternoon. 271 

3.2 Model selection results 272 

When analysing nest fate, we found that the null model was retained for every assemblage 273 

and species of interest, and in every iteration of our analyses (Appendix 2–4). That is, none of 274 

the predictors in our candidate models explained the variation in nest fate. We found that 275 

analysing daily nest survival produced more conclusive results. When all sites were included 276 

(plantings, remnants, large reference sites), the null model was again retained in every 277 

instance (Appendix 5). We found that candidate models performed better against the null 278 

model when large reference sites were excluded (Table 3). We did not find any conclusive 279 

results when analyses were restricted to restoration plantings (Appendix 6). Note that we had 280 

sufficient data to examine only dome-nesters and the superb fairy-wren in restoration 281 

plantings. 282 

3.3 Effects of patch type 283 

Daily nest survival for species of conservation concern was higher in plantings than in 284 

similarly-sized woodland remnants (Table 4). Patch type did not influence daily nest survival 285 

for any other groups of interest. We did not identify any effect of patch type on nest fate for 286 

woodland birds in our study (Appendix 2, Appendix 3). 287 
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3.4 Importance of patch attributes 288 

For species of conservation concern, daily nest survival in plantings and similarly-sized 289 

woodland remnants was better predicted by patch attributes than by nest-site or microhabitat 290 

variables (Table 3). This was the only instance in which patch attributes outperformed the null 291 

model. In addition to the aforementioned effect of patch type, we found that daily nest 292 

survival for species of conservation concern decreased with increasing patch size (Table 4). 293 

We also found a negative effect of linearity, with lower daily nest survival in more linear 294 

sites.  295 

Daily nest survival for cup-nesting species in plantings and similarly-sized remnants was best 296 

predicted by nest-site variables (Table 3). We found a negative effect of nest height – nests 297 

situated higher above the ground were associated with lower survival probabilities (Table 5). 298 

Effects estimates for other variables in the model had large standard errors, and were 299 

therefore not interpretable. 300 

Microhabitat variables were of little importance in determining breeding success of woodland 301 

birds in our study (Table 3, Appendix 2–7). Likewise, the age of restoration plantings did not 302 

contribute to predicting either nest fate or daily nest survival (Appendix 4, 7). 303 

3.5 Causes of nest failure 304 

The primary cause of nest failure was predation, which we identified as the cause of 91% of 305 

failed nests. This did not differ significantly between plantings, remnants, or large reference 306 

sites. Most other nest failures were attributed to abandonment, usually during the egg stage.  307 

3.6 Nest-predators 308 

We monitored 85 nests with cameras, and analysed a total of 308,249 camera trap images. 309 

Predation events recorded during our study were most often perpetrated by generalist avian 310 

predators, including ravens, the pied currawong (Strepera graculina), and pied butcherbird 311 
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(Cracticus torquatus) (Table 6). The next most common nest-predator (and the most 312 

damaging individual species) identified in restoration plantings and woodland remnants was 313 

the red fox (Table 6; Appendix 7). Foxes targeted nests close to the ground, including those of 314 

the superb fairywren (Table 6). We also recorded some unexpected nest-predators, including 315 

the white-browed babbler (Pomatostomus superciliosus) (see Belder 2018), and common 316 

ringtail possum (Pseudocheirus peregrinus). The eastern brown snake was recorded as a nest-317 

predator in a restoration planting on one occasion (Table 6). 318 

4 Discussion 319 

Our results are empirical evidence that restoration plantings provide suitable breeding habitat 320 

for woodland birds, and may eclipse remnant patches in supporting successful breeding of 321 

woodland birds. We found that woodland birds bred at least as successfully in restoration 322 

plantings as they did in remnant woodland patches and large reference sites. Indeed, species 323 

of conservation concern were more likely to breed successfully in restoration plantings than in 324 

remnant woodland patches. Other notable findings included negative effects of both patch 325 

size and linearity on daily nest survival for species of conservation concern.  326 

Nest survival as measured in our study was somewhat lower than expected, particularly for 327 

cup-nesting species (29.6% for cup-nesting species and 38.1% for dome-nesting species). 328 

Nest survival for Australian songbirds of the families included in our study average 42.2% for 329 

dome-nesting species and 37.7% for cup-nesting species (Remeš et al. 2012). This may 330 

indicate that habitat suitability of restoration plantings and remnant patches in our study 331 

region is lower for cup-nesters than it is for dome-nesters. Many cup-nesting species are 332 

perch-and-pounce ground-foraging species, including the willie wagtail and various robins 333 

(Petroicidae). Species in the latter family have been identified as susceptible to population 334 

decline, and careful management of the ground layer has been recommended to improve 335 
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habitat suitability for these species (Recher et al. 2002; Antos and Bennett 2006; Montague-336 

Drake et al. 2009).  337 

A decline in breeding success over the course of the breeding season, as documented for the 338 

dome-nester assemblage, is consistent with patterns observed for many bird species 339 

worldwide (Arnold et al. 2004). The positive effect of date on DSR that we recorded for cup-340 

nesters was unexpected. Potential explanations include more stable weather conditions later in 341 

the season, lower predation risk (particularly by avian predators), or changes in microhabitat 342 

variables such as grass cover over the course of the breeding season.  343 

Belder et al. (2019) documented equivalent levels of breeding activity in restoration plantings 344 

and woodland remnants, including for species of conservation concern. Our findings 345 

regarding breeding success are quantitative evidence that restoration plantings provide 346 

valuable habitat in which threatened and declining bird species can persist and breed. They 347 

also potentially highlight a need to improve the quality of woodland remnants through 348 

restorative actions such as excluding stock or replanting the shrub layer. Some species of 349 

conservation concern, such as the brown treecreeper (Climacteris picumnus), rely on habitat 350 

features that are present in woodland remnants but take decades to develop in restoration 351 

plantings (Vesk et al. 2008). It is for this reason that restoration plantings should be 352 

considered complementary to, and not a replacement for, remnant woodland (Cunningham et 353 

al. 2008; Lindenmayer et al. 2018d; Ikin et al. 2018). 354 

Previous studies have documented a positive relationship between patch size and reproductive 355 

output in birds (e.g. Burke and Nol 2000; Zanette et al. 2000; Zanette and Jenkins 2000; 356 

Zanette 2001). This has led to the prevalent view that larger patches are more valuable for 357 

woodland birds in fragmented agricultural landscapes. However, Belder et al. (2019) found 358 

that breeding activity in the South-west Slopes bioregion decreased with increasing patch 359 
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size. The results of the present study substantiate this finding. Previous research has described 360 

the value of small patches for sustaining wildlife populations (Tulloch et al. 2016; 361 

Lindenmayer 2019; Wintle et al. 2019). Our study provides direct evidence that woodland 362 

birds are able to breed successfully in small habitat patches. Possible reasons for greater 363 

success in small patches include lower abundances of predators and brood parasites in small 364 

patches, the dominance of edge-specialists and habitat generalists, and concentration effects 365 

(Belder et al. 2019). 366 

While linear patches may provide suitable habitat for some species (as evidenced by our 367 

general finding of little influence of linearity on breeding success), our results indicate that 368 

species of conservation concern may benefit more from block-shaped sites. This may be one 369 

reason why linear sites have previously been found to contain a less diverse species 370 

assemblage than block-shaped sites (Kinross 2004; Lindenmayer et al. 2010, 2018b). This is 371 

of interest for conservation planning, as it highlights the need to take into account the habitat 372 

requirements of different species and assemblages when designing revegetation programs. 373 

The presence of nest height as an explanatory variable in top models for cup-nesters may be a 374 

reflection of the dominant predators in the study region – open cup-nests are frequently 375 

targeted by avian predators (Okada et al. 2019), which may more easily locate these nests 376 

higher up in the canopy. We did not find any evidence that the distance of a nest to the nearest 377 

patch edge influenced breeding success. This is suggestive of a lack of edge-effects, which 378 

have been thought to decrease the value of small and/or linear habitat patches for birds in 379 

fragmented agricultural landscapes (Ewers and Didham 2007; King et al. 2009). However, as 380 

discussed earlier, our results showed that species of conservation concern bred more 381 

successfully in sites of decreasing linearity. One potential explanation is that linear sites do 382 

not facilitate optimal central place foraging, since nesting birds must expend more energy 383 
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traversing a linear home range than one that is more uniform in shape (Andersson 1978; 384 

Bovet and Benhamou 1991; Rosenberg and McKelvey 2016). 385 

It is somewhat surprising that microhabitat variables and planting age contributed little to 386 

explaining breeding success in our study. Previous research has documented the influence of 387 

variables such as shrub cover and ground layer complexity on site occupancy by woodland 388 

birds (Seddon et al. 2003; Antos and Bennett 2006; Montague-Drake et al. 2009; Munro et al. 389 

2011). Belder et al. (2019) also reported increased breeding activity of woodland birds in 390 

younger restoration plantings, which the authors postulated was due to a diversity of nest-site 391 

choices and foraging opportunities associated with the presence of an intact shrub layer. It is 392 

possible that microhabitat variables other than the ones included in this study may have had a 393 

greater influence on breeding success. 394 

The high nest-predation rate we recorded during our study is not unprecedented (see Zanette 395 

and Jenkins 2000; Guppy et al. 2017), but it is nonetheless of concern for the persistence of 396 

woodland bird populations in our study region. Generalist avian predators, including corvids, 397 

are often considered among species that have benefited from land clearing and habitat 398 

fragmentation in agricultural landscapes worldwide (Andrén 1992; Ford et al. 2001; Fuller et 399 

al. 2005). Invasive predators, including foxes, also benefit from increasing agricultural land-400 

use (Graham et al. 2012). Zanette and Jenkins (2000) suggest that decreasing forest cover at 401 

the landscape scale is a key factor that has led to increased incidence of nest-predation. 402 

Measuring landscape-scale vegetation cover was outside the scope of our study, but more than 403 

five million hectares of white box / yellow box / Blakely’s red gum grassy woodland has been 404 

cleared since European settlement, and less than 10% of this ecological community remains 405 

across its historic range (Manning et al. 2011). The low levels of landscape vegetation cover 406 

in our study region may be a significant influence on woodland bird population dynamics. 407 
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Prior to commencing this study, we predicted that predatory bird species and the eastern 408 

brown snake would be the dominant nest-predators in our study sites. While avian predators 409 

such as ravens and butcherbirds were indeed responsible for the majority of predation events 410 

captured during our study, we also identified another common predator – the introduced red 411 

fox. The prevalence of foxes as nest-predators in restoration plantings is cause for concern, 412 

and may limit the habitat suitability of plantings for woodland birds that nest in the lower 413 

strata or on the ground. These include several threatened and declining species, such as the 414 

speckled warbler (Pyrrholaemus sagittatus).  415 

4.1 Inferential limitations 416 

Our study has revealed previously undocumented trends in woodland bird breeding success, 417 

and provided insights into the capacity of restoration plantings and small habitat patches to 418 

support woodland birds. We acknowledge a number of limitations pertaining to the present 419 

study, and communicate these here to assist with interpretation. 420 

First, this study was conducted over a short duration. The first field season was a pilot study 421 

that enabled collection of nest fate data only, leaving one field season in which we could 422 

collect sufficiently detailed data to calculate daily nest survival. Caution is advised when 423 

extrapolating from studies of only a year duration (Maron et al. 2005). The field season on 424 

which a majority of the data in this paper are based coincided with a year of above average 425 

rainfall. Since the productivity of southern temperate woodlands is strongly linked to soil 426 

moisture (Watson 2011), it is possible that breeding success in our study region may 427 

ordinarily be lower than documented in our study. 428 

Second, the presence of the noisy miner, a hyperaggressive native honeyeater, in fragmented 429 

agricultural landscapes is a key threatening process for many woodland bird species 430 

(Montague-Drake et al. 2011; Bennett et al. 2015; Maron et al. 2016). The noisy miner 431 
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harasses small woodland birds, is a known nest-predator, and has been directly implicated in 432 

reduced breeding success of woodland bird species (Maron 2007; Maron et al. 2013; Bennett 433 

et al. 2015; Beggs et al. 2019). Our study was conducted in the absence of the noisy miner, 434 

but it is important to recognise that this species may be present and adversely affect breeding 435 

success of woodland birds in restoration plantings or other woodland patches. 436 

4.2 Future research directions and management implications 437 

We suggest that future research should focus on identifying the reasons for low breeding 438 

success in linear patches, particularly given the popularity of such configured habitat patches 439 

in agricultural landscapes. We also recommend more detailed studies on breeding success of 440 

individual species. In particular, it would be worth focusing on robins and other declining 441 

cup-nesting species to identify reasons for low nest survival and more frequent failure earlier 442 

in the breeding season (sensu Zanette et al. 2000). More extensive habitat surveys (as opposed 443 

to a focus on the immediate vicinity of the nest) might prove useful in assessing the influence 444 

of habitat variables on breeding success. In terms of management, we recommend controlling 445 

for foxes to maximise the likelihood that restoration plantings and other woodland patches 446 

support breeding populations of woodland birds. 447 

There is still much to be learned about woodland bird population dynamics in restored 448 

landscapes, and in fragmented agricultural landscapes generally. We suggest that future 449 

studies on the responses of woodland birds (and other fauna) to conservation strategies move 450 

beyond pattern data and adopt more detailed, population-oriented approaches such as the one 451 

presented in our study. Future research should focus on aspects of habitat quality that are 452 

likely to influence population persistence, such as identifying the major threats to woodland 453 

bird breeding. We also suggest that future studies be undertaken over longer time periods, to 454 

capture inter-annual variation in breeding success and reproductive output. This is particularly 455 

relevant in large parts of Australia, where animal populations fluctuate in response to extreme 456 
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interannual variations in climate and rainfall (Letnic and Dickman 2006; Burbidge and Fuller 457 

2007). Basing management outcomes on multiple years of study is a crucial component of 458 

ongoing successful biodiversity conservation. It would be highly beneficial to include studies 459 

such as ours in long-term monitoring projects, so that community responses to environmental 460 

change can be documented. However, we acknowledge that monitoring breeding success is 461 

labour-intensive, time-consuming, and costly. 462 

With the emergence of new wildlife monitoring technologies, including improvements in 463 

camera trap technology, we are hopeful that nest-monitoring will become easier and therefore 464 

more commonplace in bird breeding studies. A camera trapping method and/or software that 465 

could accurately and reliably determine key events in the nesting cycle (completion of 466 

building, egg-laying, hatching, nest predation, fledging, and abandonment) could 467 

revolutionise our ability to assess breeding success in studies worldwide. This would facilitate 468 

the incorporation of breeding studies into long-term monitoring projects, and importantly, in 469 

projects that aim to evaluate the success of conservation strategies. 470 
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Table 1 Linear mixed model parameters. The response variables are FATE and DSR, and all other 

variables are predictors. 

Variable name Response/predictor Model set Description 

FATE Response  Nest fate (a binary variable where 0 = survive and 1 = fail) 

DSR Response  Daily survival rate, calculated using Program MARK 

DATE Predictor  Julian date of nest discovery 

TYPE Predictor Patch Patch type (planting, remnant, reference) 

SIZE Predictor Patch Patch size (ha) 

SHAPE Predictor Patch Measure of patch shape, calculated as perimeter/width (m) 

AGE Predictor Age Age of planting at the commencement of the study (years) 

HEIGHT Predictor Nest Height of nest above ground (m) 

DIST_EDGE Predictor Nest Distance of nest to nearest patch edge (m) 

CONCEALMENT Predictor 
Nest Nest concealment, estimated at approx. 10 m from the nest 

(%) 

BARE GROUND Predictor Microhabitat Proportion of bare ground cover within 20 m of the nest 

LEAF LITTER Predictor Microhabitat Proportion of leaf litter cover within 20 m of the nest 

GRASS Predictor Microhabitat Proportion of exotic grass cover within 20 m of the nest 

WOODY DEBRIS Predictor Microhabitat Proportion of woody debris cover within 20 m of the nest 

SHRUB COVER Predictor Microhabitat Amount of midstorey shrub cover (%) 
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Table 2 Number of nests (n) and effective sample size (ness) used to calculate daily nest survival 

(DSR) for each subset of the woodland bird assemblage. 

Subset Sites n ness   

dome  planting + remnant + reference 107 2134   

 planting + remnant 86 1682   

 planting 72 1393   

cup planting + remnant + reference 50 599   

 planting + remnant 39 428   

superb fairywren planting + remnant + reference 56 1046   

 planting + remnant 46 826   

 planting 37 652   

conservation concern planting + remnant + reference 34 720   

 planting + remnant 31 647   
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Table 3 Daily nest survival models for woodland birds in restoration plantings and similarly-sized woodland remnants 
(excluding large reference sites). Models are ranked by Akaike's Information Criterion corrected for small sample sizes 
(AICc). 

Dome-nesters npar AICc ΔAICc AICw Deviance 

Constant 1 343.94 0.00 0.73 341.93 

TYPE + SIZE + SHAPE + DATE 5 346.53 2.59 0.20 336.49 

DIST_EDGE + CONCEALMENT + HEIGHT + DATE 5 348.82 4.88 0.06 338.78 

GRASS + BARE GROUND + LEAF LITTER + WOODY DEBRIS + SHRUBS + DATE 7 352.06 8.12 0.01 337.99 

Cup-nesters      

DIST_EDGE + CONCEALMENT + HEIGHT + DATE 5 134.88 0.00 0.75 124.74 

Constant 1 137.74 2.86 0.18 135.73 

TYPE + SIZE + SHAPE + DATE 5 140.18 5.29 0.05 130.03 

GRASS + BARE GROUND + LEAF LITTER + WOODY DEBRIS + SHRUBS + DATE 7 142.46 7.57 0.02 128.19 

Superb fairywren      

Constant 1 180.65 0.00 0.80 178.64 

DIST_EDGE + CONCEALMENT + HEIGHT + DATE 5 184.06 3.41 0.14 173.98 

TYPE + SIZE + SHAPE + DATE 5 186.51 5.86 0.04 176.44 

GRASS + BARE GROUND + LEAF LITTER + WOODY DEBRIS + SHRUBS + DATE 7 189.24 8.59 0.01 175.10 

Species of conservation concern      

TYPE + SIZE + SHAPE + DATE 5 122.98 0.00 0.73 112.89 

Constant 1 125.54 2.56 0.20 123.53 

DIST_EDGE + CONCEALMENT + HEIGHT + DATE 5 127.89 4.91 0.06 117.79 

GRASS + BARE GROUND + LEAF LITTER + WOODY DEBRIS + SHRUBS + DATE 7 133.66 10.68 0.00 119.49 
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Table 4  Parameter estimates for daily nest survival models computed by Program MARK for species 
of conservation concern in restoration plantings and similarly-sized woodland remnants (n = 31, ESS 
= 647). 

Parameter Estimate (SE)     

Intercept 4.77 (0.69)     

TYPE (remnant) –1.56 (0.97)     

SIZE –0.97 (0.34)     

SHAPE –0.57 (0.29)     

DATE –0.02 (0.01)     
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Table 5 Parameter estimates for daily nest survival modelled against nest-site variables for cup-

nesting species in restoration plantings and similarly-sized woodland remnants (n = 39, ESS = 428). 

Parameter Estimate (SE)     

Intercept 1.75 (0.53)     

DIST_EDGE 0.18 (0.24)     

CONCEALMENT 0.04 (0.23)     

HEIGHT –0.61 (0.28)     

DATE 0.01 (0.01)     
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Table 6 Nest-predators identified from camera trap imagery of 85 monitored woodland bird nests in 

the South-west Slopes bioregion, NSW. Note that it was not possible to distinguish between 

Australian Raven (Corvus coronoides) and Little Raven (C. mellori) on camera trap imagery. Cattle 

and sheep are included as predators on the basis of camera trap imagery, but may have destroyed 

nests without consuming eggs or nestlings. 

Common name Species 
Planting Remnant Reference Total Nest 

height (m) 

*Red Fox Vulpes vulpes 5 1 2 8 0–1.1 

Australian/Little Raven Corvus sp. 5  1 6 0.9–2.2 

Pied Currawong Strepera graculina 1  2 3 0.3–5.5 

Pied Butcherbird Cracticus torquatus  2  2 1.6–1.7 

Brown Goshawk Accipiter fasciatus 1   1 1.7 

White-browed Babbler 
Pomatostomus 
superciliosus 

1   1 0.4 

Australian Magpie Gymnorhina tibicen   1 1 1.1 

Common Brushtail 
Possum 

Trichosurus vulpecula 
  1 1 0.1 

Common Ringtail 
Possum 

Pseudocheirus 
peregrinus 

  1 1 4.0 

*Cattle Bos taurus  1  1 0.3 

*Sheep Ovus aries   1 1 0.3 

Eastern Brown Snake Pseudonaja textilis 1   1 0.2 

Eastern Blue-tongue 
Lizard 

Tiliqua scincoides 
1   1 0.2 

*Introduced species 
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Figure 1 
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Figure Legends 

 

Figure 1 Map of study sites in the South-west Slopes bioregion of New South Wales, 

Australia. Map created using ggmap for R (Kahle and Wickham 2013).  

Figure 2 Proportion of failed woodland bird nests according to nest type. Shaded areas 

indicate upper and lower 95% confidence intervals. Clustered points indicate frequency of 

success (0) and failure (1) for each nest type. Data from both 2015 and 2016 were modelled 

to produce estimates. Plot created using ggplot2 for R (Wickham 2016). 

Figure 3 Daily nest survival of cup-nesting species (a) and dome-nesting species (b) over the 

course of the 2016 spring breeding season in the South-west Slopes bioregion, NSW. 

Probability refers to the likelihood of the nest surviving to the end of the study. Day 1 

represents the first day of the study (the first day on which a nest could be discovered). 

Shaded areas indicate upper and lower 95% confidence intervals. Plot created using ggplot2 

for R (Wickham 2016). 
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