This is the peer reviewed version of the following article: Stojanovic, D., Olah, G., Webb, M., Peakall, R., Heinsohn, R. (2018) Genetic evidence confirms severe extinction risk for critically endangered swift parrots. *Animal Conservation, 21* (4), pp. 313-323, which has been published in final form at https://doi.org/10.1111/acv.12394

This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
Genetic evidence confirms severe extinction risk for critically endangered swift parrots: implications for conservation management

Dejan Stojanovic1,3*, George Olah1,2*, Matthew Webb1, Rod Peakall2, Robert Heinsohn1

1. Fenner School of Environment and Society, Australian National University, Canberra, ACT 2601 Australia

2. Research School of Biology, The Australian National University, Canberra, ACT 2601 Australia

3. Dejan.Stojanovic@anu.edu.au

* Authors contributed equally to the manuscript

Abstract

Mobile species pose major challenges for conservation because of their unpredictable, large scale movements in response to fluctuating resources. If locations with critical resources overlap with threats, large proportions of a mobile population may be exposed to threats. Critically endangered and nomadic swift parrots \textit{Lathamus discolor} nest wherever food is most abundant in their breeding range, but concern exists that nest predation from an introduced predator may severely affect their population. Although swift parrots nest on predator free offshore islands, population viability analysis indicates that island nesting alone may be insufficient to offset extinction risk from high mainland predation rates.

This article is protected by copyright. All rights reserved
assuming that the species is a single panmictic population. We test the assumption that swift parrots act as a single conservation unit. We undertook a population genetic analysis using seven microsatellite loci and samples obtained over 6 years from across the breeding range of swift parrots. We found no evidence of departure from Hardy-Weinberg expectations across the species and both Analysis of Molecular Variance and Bayesian Structure analyses failed to detect any evidence for genetic differentiation across the samples both spatially and temporally. These results, supported by simulations, indicate panmixia and a lack of population genetic structure in swift parrots. Unlike a sedentary or site philopatric species, the majority of the swift parrot population may be at risk of exposure to predation when unpredictable resources draw individuals away from islands. These findings support a key assumption of population viability models that predict an extreme reduction in population size for swift parrots, and address a major gap in knowledge of the species’ ecology. Our study has implications both for the development of effective conservation management strategies and for the longer-term evolution of avoidance of predator infested habitat in swift parrots.

Keywords

Resource bottleneck; swift parrot; *Lathamus discolor*; migration; introduced predator; population genetics; extinction risk; population viability

Introduction

Conservation of mobile species is complicated by their variable movements because these increase the proportion of the total population potentially exposed to threatening processes (Runge *et al.*, 2016, Runge *et al.*, 2015). The consequences of threats may be particularly severe if they occur at critical locations where resources are limiting (Maron *et al.*, 2015, Runge *et al.*, 2014), and thus may act as ecological traps that increase extinction risk (Robertson *et al.*, 2013, Robertson and Hutto, 2006). However, the degree of extinction risk may depend on whether the mobile species behaves as one or more genetically discrete subpopulations (hereafter: conservation units). The existence of multiple conservation units may reduce the likelihood of species extinction when the impact of threats is severe (Runge *et al.*, 2014).
The number of conservation units for a species can depend on the scale of individual movements (Canales-Delgadillo et al., 2012, Newton, 2006a), variation in resource availability across the geographic range (Roshier et al., 2008) and the spatial scale at which gene flow occurs (Haig et al., 2011). Whether individual movements correspond to gene flow (i.e. resulting in new breeding sites) is critical to how different conservation units may be defined. Some widespread mobile species exhibit local adaptation where food is reliable and these adaptations may assist differentiation of separate conservation units. For example crossbills *Loxia* spp. undertake continental scale movements to exploit masting of a few food tree species in forests where seed production is unpredictable (Newton, 2006b). Some crossbill populations exploit more reliable food trees (e.g. trees that seed annually or are serotinous) and have evolved into distinct lineages (Benkman, 1993) that can be considered separate conservation units. Reliable food enables evolutionary divergence of local crossbills from mobile populations that live in less predictable environments (Edelaar et al., 2012, Parchman et al., 2006). Low resource reliability also appears to be closely linked with low population genetic structure in other comparable systems, for example irruptive owls (Marthinsen et al., 2009) and seed eating passerines (Mason and Taylor, 2015).

Understanding genetic consequences of resource fluctuations and movement patterns may be key to defining conservation units for widespread mobile species.

We use data from a multi-year study to evaluate whether one or more conservation units exist for a mobile resource specialist. Swift parrots *Lathamus discolor* are nomadic migrants that breed in Tasmania (including two major offshore islands) and winter on the Australian mainland (Higgins, 1999). The entire population moves to breed in different locations each year depending on the configuration of key resources across the potential range (Webb et al., 2017). Swift parrots are critically endangered, and introduced sugar gliders *Petaurus breviceps*, a small arboreal, volant marsupial, are a major cause of mortality of nests and breeding female parrots (Heinsohn et al., 2015). The small nest cavities preferred by swift parrots protect against native Tasmanian predators, but sugar gliders are not excluded by this passive nest defence (Stojanovic et al., 2017). Tasmanian offshore islands (where sugar gliders do not occur) are important population sources, whereas Tasmanian mainland sites can act as sinks for swift parrots due to predation pressure (Stojanovic et al., 2014).
On the basis of population-level movements of swift parrots (Webb et al., 2017), population viability analysis (PVA) of extinction risk have assumed that the species acts as a single panmictic conservation unit (Heinsohn et al., 2015), and that no island-philopatric subpopulations exist. Under these assumptions, Heinsohn et al. (2015) estimated that swift parrots may decline by 94 % in three generations because breeding success on islands cannot offset predation mortality on the Tasmanian mainland.

This critical assumption of panmixia in the PVA of Heinsohn et al. (2015) has not been tested, despite the conservation significance of potential island refuges assuming population differentiation exists. Therefore, in this study we address this knowledge gap by applying population genetic analysis and simulations to answer four questions: (1) Does the species fit expectations consistent with a single panmictic conservation unit? (2) Is there genetic differentiation among populations from islands and the Tasmanian mainland? (3) Is there temporal genetic differentiation among years? (4) Is there evidence for sex-biased dispersal? We consider these results in the context of PVA of the species and evaluate the implications for the conservation of mobile species.

Materials and methods

Study system and species background

This study was conducted across most of the swift parrot breeding range between 2010 and 2016 (Fig. 1). Genetic samples for this study were not available for Maria Island or northern Tasmania, but all other sites considered by Heinsohn et al. (2015) were included here. Swift parrots require the co-occurrence of both food (nectar from Eucalyptus globulus and E. ovata flowering) and nesting habitat (tree cavities) for successful breeding (Webb et al., 2017). Breeding occurs anywhere in Tasmania where flowering and suitable nesting habitat occur together, including two offshore islands, but the specific location of breeding varies over time depending on local resource abundance (Fig. 2). In any given breeding season due to the variation in food availability, only a fraction of the potential range is occupied (Webb et al., 2017). Swift parrots move to breed where tree flowering is most abundant (Fig. 2), and in years when food is locally unavailable, birds are absent from islands (Webb et al., 2017). Heinsohn et al. (2015) reported that the proportion of the swift parrot population that settled to breed on islands varied between 0 – 29 % in any given year. Based on these
high rates of movement of individuals among island and Tasmanian mainland breeding sites, Heinsohn et al. (2015) treated the population as a single conservation unit for the purposes of PVA.

Sample collection

Swift parrot nests were identified across the study area during standardised monitoring (Webb et al., 2014) and unstructured searches. Nests were identified using behavioural cues of swift parrots and accessed using single rope climbing techniques (Stojanovic et al., 2015). Nestling swift parrots were temporarily removed from their nest cavities (Stojanovic et al., 2015) and blood was collected using brachial venepuncture. Blood was stored on FTA paper (Whatman™). Adult swift parrots were captured during nestling provisioning and either blood (collected as above) or feathers (plucked from the flank and stored in 95 % ethanol) were collected. Tissue was taken from dead swift parrots (adult females and nestlings killed by sugar gliders, and an injured wild bird that was euthanized after entering care) and these were stored in 95 % ethanol.

Our swift parrot samples were drawn from two geographic groups (referred to as ‘regions’ in our AMOVA analysis, see below): ‘mainland’ Tasmania and ‘island’, with spatially aggregated samples within regions treated a priori as ‘populations’. In an additional analysis of genetic differentiation among sampling years, we defined ‘temporal populations’ on the basis of the year in which they were collected (i.e. 2010 - 2015 breeding seasons, Table 1).

DNA extraction and microsatellite genotyping

We used two methods to extract DNA depending on the type of sample. DNA extraction from blood stored on FTA paper was performed following the standard procedure for nucleated erythrocytes (Smith and Burgoyne, 2004). DNA was extracted from feather and tissue samples using the Qiagen DNeasy Blood and Tissue kit (QIAGEN, California) following manufacturer instructions with some modifications (Olah et al., 2017).

Using a subset of randomly selected high quality DNA samples (n = 30) we screened previously described microsatellite loci (n = 30) that were known to be informative in other parrot species. Based on this pilot study we selected eight informative loci for further
analysis (all were dinucleotide repeats): Cfor1415, Cfor2627, Cfor3031 (Chan et al., 2005), pCl3 (White et al., 2009), and SCMA 01, SCMA 04, SCMA 07, SCMA 29 (Olah et al., 2015).

Laboratory analysis followed Olah et al. (2017), but briefly, M13 PCR tags were attached to all forward primers (Schuelke, 2000) and we amplified all loci individually. PCR products were multiplexed in the same lane using different fluorescent tags and genotyped on an ABI 3130XL sequencer (Applied Biosystem). We used water instead of DNA extract as a negative control for contamination checking and with each genotyping run, in one out of 16 capillaries we always included the same sample as positive control to ensure consistent size scoring across all genotyping runs. Results were scored using Geneious version R6 (Kearse et al., 2012) with full genotypes constructed across 8 loci. Approximately, 25 % of the samples were repeated to estimate genotyping errors. Loci were screened for the presence of null alleles across all samples with MicroChecker 2.2.3 (Van Oosterhout et al., 2004). Samples with more than four missing loci were excluded from subsequent analysis.

Population genetic structure analyses

We tested for deviations from Hardy–Weinberg Equilibrium in GenePop 3.4 (Raymond and Rousset, 1995b) using an exact probability test (Markov chain parameters were set to 100 batches with 1,000 iterations per batch). We first treated the entire sample set as a single population representative of the entire species. We also performed separate analyses for island and mainland subsets. We combined the exact P values using Fisher’s method and report the chi-square test across all loci and populations. We used GenAlEx 6.5 (Peakall and Smouse, 2012, Peakall and Smouse, 2006) to calculate allele frequencies, observed and expected heterozygosities, inbreeding coefficients, G-statistics, probability of identity (P_I), and probability of identity for siblings ($P_{I_{sibs}}$). We also used the Analysis of Molecular Variance (AMOVA) framework offered within GenAlEx to partition genetic variation within and among a priori defined populations and regions (defined above). This AMOVA analysis provided estimates of overall and pairwise population genetic differentiation (F_{ST}), differentiation among regions (F_{RT}), differentiation among populations within regions (F_{SR}) (Excoffier et al., 1992, Peakall et al., 1995), and their standardized (0,1) equivalents (Meirmans, 2006, Meirmans and Hedrick, 2011). We performed tests for departure from the null hypothesis of no genetic differentiation using 1,000 random permutations and interpolated the missing data (Peakall and Smouse, 2006).
To identify potential population genetic structure in the absence of any a priori grouping of the samples, we used the Markov chain Monte Carlo (MCMC) Bayesian clustering approach implemented in the program STRUCTURE 2.3.4 (Pritchard et al., 2000). For this analysis we ran the admixture model, with correlated allele frequencies and no location priors (Falush et al., 2003). Burn-in was set to 50,000 iterations, followed by 50,000 MCMC iterations replicated 10 times for each value of the number of genetic clusters (K) from 1 to 10. We used STRUCTURE Harvester (Earl and vonHoldt, 2012) and the ‘CorrSieve’ package of R (Campana et al., 2011) to determine K (Evanno et al., 2005).

We used GenAlEx to test for isolation-by-distance across the study area using a Mantel test (Mantel, 1967) based on individual genotypes. We used 10,000 random permutations at the individual level to test for departure from the null hypothesis (no spatial genetic relationships).

Relatedness estimates

We tested the possibility that related individuals may prefer to nest together using the ‘compareestimators’ function of the ‘related’ package in R (Pew et al., 2015) to compare the performance of four relatedness estimators simulated from the original dataset. Given similar performance (Pearson’s correlation coefficients between observed and expected values: Wang (2002) = 0.707, Li et al. (1993) = 0.709, Lynch and Ritland (1999) = 0.717, Queller and Goodnight (1989) = 0.696), we selected the Lynch and Ritland (1999) estimator (Fig. S1) and used the ‘grouprel’ function to analyse relatedness within populations using 1,000 iterations.

We used GenAlEx to calculate mean pairwise relatedness (Lynch and Ritland, 1999) of each pair of individuals within our sample compared to mean relatedness among all samples, and estimated the 95% confidence interval for mean pairwise r values via bootstrapping (Beck et al., 2008). We used random permutation of the data to generate a distribution for the null hypothesis (no relatedness within groups) and test for significance (process performed 1,000 times). We included a control group of 15 siblings from five nests. We also used individual-focused multilocus spatial autocorrelation analysis for each sex to investigate potential sex-biased dispersal.

Population genetic simulations

This article is protected by copyright. All rights reserved
In order to test the power of the microsatellite markers to detect potential population genetic structure \((F_{ST} > 0 = \text{‘genetic differentiation’})\), and given the constraints on the total sample size, we implemented the program POWSIM v4.1 (Ryman and Palm, 2006). This program creates simulated populations of an expected divergence without the effects of migration or mutation, based on specific demographic parameters. As input we provided total allele frequencies from our study to simulate the process of genetic drift, at these starting allele frequencies, and defined effective population size(s). The program then subsamples the simulated populations at specified generations for given sample sizes, and performs a genetic homogeneity test for equivalent allele frequencies \((F_{ST} = 0)\). The proportion of significant outcomes offers an estimate of the power of a given marker set to detect genetic differentiation, given the sampling frame. We set the effective population size \((N_e)\) to 1,000 and repeated the entire process of drift, sampling and statistical testing 10,000 times.

Using POWSIM, we first estimated the type I \((\alpha)\) error (i.e. falsely rejecting the null hypothesis of \(F_{ST} = 0\) no differentiation) by setting drift to zero (sampling directly from the base population) and using different sample sizes \((n = 10, 25, 50, 100)\) from two generated populations (i.e. mainland and island). Second, we assessed the power to detect different \(F_{ST}\) values \((N_e = 1000, t = 10, F_{ST} = 0.005; \text{or } N_e = 1000, t = 20, F_{ST} = 0.01)\) between two populations using different sample sizes \((n = 10, 25, 50, 100)\). We report Pearson’s chi-square and Fisher’s exact test, following the calculation in GENEPOP 3.4 (Raymond and Rousset, 1995a, Raymond and Rousset, 1995b). In order to show the effect of allelic losses during the simulations, we report separate results from both runs where all original alleles were preserved and also runs where allelic loss had occurred (Ryman et al., 2006).

In a complementary simulation approach, we also used the program EASYPOP v2.0.1 (Balloux, 2001) to estimate how many generations of restricted gene flow would be required to develop genetic differentiation similar to that found in our empirical dataset. We used equivalent parameter settings to POWSIM to simulate two populations (each including 250 males and 250 females, i.e. \(N_e = 1000\)) with mating set to monogamy with 40% extra pair copulation events (as observed in the wild swift parrot populations, R. Heinsohn unpublished data) isolated over 100 generations with different migration rates \((m)\). We used Wright’s island model to simulate isolation, using seven unlinked
microsatellite loci (with mutation rate of 0.0005) and five possible allelic states (matching the average effective allele number of our loci), setting maximum variability in the initial populations (randomly assigned alleles).

In the first group of models, we simulated panmixia in the first 10 generations (m = 0.75 for both males and females), before setting a different migration rate for another 100 generations (m = 0, 0.001, 0.01, 0.05, and 0.1). In the second group of models, we simulated two divergent populations with $F_{ST} = 0.02$ (m = 0 for 40 generations), and then set different migration rates for another 70 generations as above. We then calculated the average unbiased F_{ST} values for each simulated generation based on 100 repeats.

Results

We obtained genetic data for 109 individuals (Table 1), comprising 63 males and 46 females (one sample per nest).

Microsatellite validation

For the locus Cfor3031 the software MicroChecker indicated the presence of null alleles (estimate of Oosterhout frequency of null alleles = 0.166), hence we excluded it from further analyses. Based on repeated genotypes, across the seven loci the average scoring error was 0.5 % (range: 0 - 2.2 %), and the average allelic dropout was 12.9 % (range 8.6 - 19.4 %). Across all seven loci the allele number ranged from 3 to 20 per locus.

Tests for Hardy-Weinberg Equilibrium

We found no deviation from Hardy-Weinberg Equilibrium across all seven loci at the species level (Fisher’s chi-square = 9.55, df = 14, $P = 0.795$), or evidence for heterozygote deficit ($P = 0.326$, SE = 0.029) or heterozygote excess ($P = 0.674$, SE = 0.029) (Table S1). Only the locus Cfor3031 showed significant deviation from Hardy-Weinberg Equilibrium, but we excluded it based on the MicroChecker analysis for null alleles (Table S1). We found no deviation from the Hardy-Weinberg Equilibrium when the Tasmanian mainland (Fisher’s chi-square = 13.83, df = 14, $P = 0.463$) and the offshore island populations (Fisher’s chi-square = 6.15, df = 14, $P = 0.963$) were considered separately. Mean expected heterozygosity among populations was 0.685 and observed heterozygosity values ranged from 0.42 - 0.9 (mean 0.679). The overall average fixation index was 0.007 (Table 2), consistent with Hardy-Weinberg
Equilibrium. The five most variable loci ($\text{PI}_{\text{sibs}}(5) = 0.009$) were predicted to recover all unique genotypes, given the sample size.

Genetic differentiation in space and time

We failed to detect any evidence of population genetic structure in swift parrots. The genetic distance based AMOVA analysis partitioned only 0.17% of genetic variation between the mainland vs. island regions ($F_{RT} = 0.002, F'_{RT} = 0.006, P = 0.258$) and 0.22% among populations within these regions ($F_{SR} = 0.002, F'_{SR} = 0.007, P = 0.325$; Table S2). Furthermore, no significant differences in F_{ST} were detected for any pairwise comparison between the populations (AMOVA: $F_{ST} = 0.004, P = 0.175$; Table S2), or over time (AMOVA: 0.37% among years, $F_{ST} = 0.004, F'_{ST} = 0.013, P = 0.201$). Using alternative allele frequency based G-statistics analysis also failed to detect any significant genetic differentiation (overall $G_{ST} = 0.002, P = 0.333$; overall $G''_{ST} = 0.009, P = 0.332$).

The STRUCTURE analysis outcome was consistent with the AMOVA and G-statistics analyses, indicating a single genetic cluster and no detectable population boundaries (Fig. S2, Table S3). Finally, at the level of individual genotypes, no significant isolation-by-distance was detected across the study (Mantel test >180 km, $N = 109, r = 0.048, P = 0.096$), nor within mainland Tasmania (Mantel test >180 km, $N = 54, r = 0.362, P = 0.362$).

Relatedness and sex-biased dispersal

Mean pairwise relatedness estimates (Lynch and Ritland, 1999) did not indicate higher than expected relatedness at any nesting site in either the ‘related’ (Fig. S3) or in the GenAlEx (Fig. S4) analyses. We also did not detect significant local individual-by-individual spatial genetic structure when females and males were considered separately (Fig. 3), indicating no evidence for a strong sex-biased dispersal pattern (Banks and Peakall, 2012).

Population genetic simulations

The PowSim results confirmed that risk of type I errors was below 5% across the full range of sample sizes that characterised this study (10 – 100; Fig. S5A). For our sample of individuals from mainland and island populations respectively, the simulation results indicated almost complete power (96%) to detect genetic differentiation if the real F_{ST} was
0.01 and reasonable power (67 %) to detect differentiation if the real F_{ST} was 0.005 (Fig. S5B).

The EasyPop simulations confirmed that genetic differentiation develops quickly in the absence of any gene flow, as expected (even under the one-migrant-per-generation scenario with $m = 0.001$). With extensive gene flow of $m = 0.1$ per generation, a stable and low level of differentiation developed and persisted at $F_{ST} \sim 0.001$ (Fig. S6A). Conversely, when we started the EasyPop simulation at $F_{ST} \sim 0.02$, differentiation declined to a similar low level of $F_{ST} \sim 0.001$ at $m = 0.1$ per generation (Fig. S6B). Under more restricted gene flow of $m \geq 0.01$, F_{ST} exceeded 0.01 in the later generations of the simulation (Fig. S6).

Discussion

In this study, we present the first population genetic data for the critically endangered swift parrot. PVAs predict swift parrot population decline by 94 % over just three generations (Heinsohn et al., 2015), prompting recent revision of the species conservation status (BirdLife International, 2016, Threatened Species Scientific Committee, 2016). The assumptions underlying PVAs must be rigorously tested, particularly given the implications of Heinsohn et al. (2015) for swift parrot conservation and forest management. Here, we confirm a key assumption of Heinsohn et al. (2015), i.e. the entire swift parrot population is a single, panmictic conservation unit and that isolated subpopulations do not exist on predator free islands.

Our multifaceted population genetic analysis, which included robust tests for Hardy-Weinberg Equilibrium, and multiple tests for population genetic structure including AMOVA, G-statistics, Structure analysis and Mantel tests, found congruent and highly consistent results. No significant deviation from Hardy-Weinberg Equilibrium expectations was detected at either the species or regional levels (island vs. mainland), consistent with a very low average inbreeding coefficient ($F'_{SR} = 0.007$). We found no evidence for any significant population genetic structure across geographically defined regions, or among populations defined by space or time. Neither was any isolation-by-distance detected at the individual genotype level.

Our PowSim simulation confirmed that despite the challenges of collecting enough genetic material from a critically endangered nomadic population, we had adequate power to...
detect genetic structure ($F_{ST} > 0$) if it existed between islands and the Tasmanian mainland. However, the simulation drift process used in our method is not intended to replicate the true demography of the studied population, but to simulate their evolutionary history by randomly distributing the original alleles in a biologically reasonable way (Ryman et al., 2006).

We found that F_{ST} was not significantly different from zero for swift parrots (mean $F_{SR} = 0.002, P < 0.325$). The EasyPop simulations indicated that high levels of contemporary gene flow best explain the observed lack of genetic differentiation. For example, at migration rates of $m = 0.01$ or less, genetic differentiation developed quickly in the simulations and reached a stable $F_{ST} > 0.01$ (Fig. S6A). Similarly, when starting the simulations at $F_{ST} = 0.02$, differentiation quickly declined at higher migration rates ($m = 0.01$ or more; Fig. S6B). We note that the high migration rates associated with the lower levels of differentiation are at least an order of magnitude higher than one migrant per generation ($m = 0.001$). The one migrant per generation rule of conservation genetics is considered a minimum level of gene flow to avoid loss of heterozygosity among populations (Wang, 2004). However, our simulations support the well-known caveat that one migrant per generation does not imply panmixia of different populations (Mills and Allendorf, 1996).

We conclude that our genetic findings collectively and consistently support the null hypothesis of a randomly mating, single panmictic swift parrot population. These genetic findings support predictions based on the monitoring of landscape scale fluctuation in food availability and population settlement patterns by swift parrots (Webb et al., 2017, Webb et al., 2014). Those studies showed major fluctuation in the proportion of the swift parrot population that settled in island or Tasmanian mainland breeding habitats in any given year, as a consequence of annual variation in food availability (Fig. 2). For example, in some years breeding mainly occurs on the Tasmanian mainland (Fig. 2b, c, f) with few or no birds breeding on islands. In other years both the mainland and islands are used (Fig. 2e), whereas in some year breeding is almost exclusively on islands (Fig. 2a, d). Such variable patterns of breeding indicate extensive gene flow among these habitats, consistent with the genetic results.

Our findings contrast with studies of other parrots, which typically show some degree of significant population genetic structure over space (Olah et al., 2017, White et al., 2014),
but not always (Wright et al., 2005, Wright and Wilkinson, 2001). However, our results are broadly consistent with the few other genetic studies of mobile resource specialists, for example comparable nectarivores (Kvistad et al., 2015), owls (Marthinsen et al., 2009) and seed eating passerines (Questiau et al., 1999), where population genetic structure is limited or absent. Given the ecological similarities between our study system and those of other mobile resource specialists, swift parrots may be a good model species for understanding how resource fluctuation and encounters with threatening processes impact mobile populations more generally.

Our study highlights the potential population-level consequences of spatial overlap between unpredictable resource pulses (Webb et al., 2017) and a widespread predator (Stojanovic et al., 2014). Predator free islands support <30% of the swift parrot population in a given year (Heinsohn et al., 2015), but our study shows that these birds do not comprise a genetically isolated subpopulation. When food availability is limited on islands, most swift parrots settle on the Tasmanian mainland (Fig. 2) where, at some locations, sugar glider nest predation rates can be as high as 100% (Stojanovic et al., 2014). When mobile species operate as a single conservation unit, localized threats may, given enough time, impact the entire population (Runge et al., 2014). Therefore, it follows that conservation action in predator infested mainland habitats will be critical to prevent extinction of swift parrots. This must include limiting deforestation in breeding habitat (which may be related to predation severity, Stojanovic et al., 2014), augmenting nesting habitat on islands, and protecting parrot nests in sugar glider infested forests.

For mobile species in unpredictable environments, lack of isolated subpopulations and few conservation units increases overall extinction risk when resources overlap with threats. Our results support the argument that in addition to targeting conservation action for mobile species at broad spatial scales (Cottee-Jones et al., 2016), conservation efforts for mobile species should focus on reducing the likelihood that resources could attract animals into areas where threatening processes occur (Runge et al., 2014). Where this is unavoidable due to low habitat availability, targeted conservation action at critical sites may be necessary to alleviate population level impacts of threatening processes.

Acknowledgements

This article is protected by copyright. All rights reserved
Thanks to Fernanda Alves, Allegra Biggs-Dale, Chris Brearley, Adrian Dale, Fred and Mercedes Duncan, Henry Cook, Mathew Eyles, Gill Fowler, Jill and Ron Harris, Mark Holdsworth, Fiona Hume, Inala Nature Tours, the Indigenous Land Council (Lynne and Bruce Michaels), Dave James, Eric Lira, Tony McLain, Rick Murray, Joanne Naylor, Cecilia Phu, Sue Robinson, Weetapoon Aboriginal Corporation and Allan Wiltshire. Funding was provided by a Commonwealth Government research environmental offset (paid by Cumnock Management Pty. Ltd.), Australian Government National Environmental Science Programme, the Australian Research Council and the Loro Parque Fundación. The work was conducted under a Tasmanian Government Scientific Permit (TFA14232) and with Australian National University Animal Ethics Committee approval (A2014/26). We thank the anonymous referees for their insightful and helpful comments which improved the manuscript.

LITERATURE CITED

Incorporating dynamic distributions into spatial prioritization. *Diversity and
Distributions* 22, 332.

Runge, C. A., Watson, J. E. M., Butchart, S. H. M., Hanson, J. O., Possingham, H. P., Fuller, R.

when testing for genetic differentiation. *Molecular Ecology Notes* 6, 600.

Ryman, N., Palm, S., Andre, C., Carvalho, G. R., Dahlgren, T. G., Jorde, P. E., Laikre, L.,
divergence: Differences between statistical methods and marker loci. *Mol Ecol* 15,
2031.

Biotech* 18, 233.

on reproductive success of a critically endangered bird. *Emu - Austral Ornithology*.

Exploiting the richest patch has a fitness payoff for the migratory swift parrot.
Journal of Animal Ecology 84, 1194.

novel predator reveals extreme but highly variable mortality for an endangered bird.
Diversity and Distributions 20, 1200.

Threatened Species Scientific Committee (2016). Approved conservation advice for
lathamus discolor (swift parrot). Department of the Environment, Canberra.

Table 1. Source of samples per region and per season.

This article is protected by copyright. All rights reserved
<table>
<thead>
<tr>
<th>Region / Year</th>
<th>2010</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>Total per Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Bruny Island</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>(BN)</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>10</td>
<td>21</td>
</tr>
<tr>
<td>South Bruny Island (BS)</td>
<td>-</td>
<td>2</td>
<td>12</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Buckland (BU)</td>
<td>3</td>
<td>-</td>
<td>9</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Eastern Tiers (ET)</td>
<td>-</td>
<td>8</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Meehan Range (ME)</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Rheban (RH)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Southern Forests (SF)</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Wielangta (WI)</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Total per Year</td>
<td>17</td>
<td>11</td>
<td>16</td>
<td>29</td>
<td>109</td>
</tr>
</tbody>
</table>
Table 2. Population statistics for seven microsatellite markers of dinucleotide repeats for swift parrots. Column headings (from left to right) are: locus name, number of samples (N), fragment size range (bp), number of alleles (N_a), effective number of alleles (N_e), observed heterozygosity (H_O), expected heterozygosity (H_E), fixation index (F).

<table>
<thead>
<tr>
<th>Locus</th>
<th>N</th>
<th>bp</th>
<th>N_a</th>
<th>N_e</th>
<th>H_O</th>
<th>H_E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cfor1415</td>
<td>112</td>
<td>204-214</td>
<td>6</td>
<td>3.221</td>
<td>0.652</td>
<td>0.689</td>
<td>0.055</td>
</tr>
<tr>
<td>Cfor2627</td>
<td>111</td>
<td>142-180</td>
<td>17</td>
<td>6.397</td>
<td>0.874</td>
<td>0.844</td>
<td>-</td>
</tr>
<tr>
<td>pCl3</td>
<td>112</td>
<td>112-122</td>
<td>4</td>
<td>1.664</td>
<td>0.429</td>
<td>0.399</td>
<td>-</td>
</tr>
<tr>
<td>SCMA 01</td>
<td>110</td>
<td>160-206</td>
<td>20</td>
<td>10.36</td>
<td>0.9</td>
<td>0.904</td>
<td>0.004</td>
</tr>
<tr>
<td>SCMA 04</td>
<td>99</td>
<td>251-291</td>
<td>17</td>
<td>7.054</td>
<td>0.848</td>
<td>0.858</td>
<td>0.011</td>
</tr>
<tr>
<td>SCMA 07</td>
<td>106</td>
<td>283-301</td>
<td>8</td>
<td>2.946</td>
<td>0.632</td>
<td>0.661</td>
<td>0.043</td>
</tr>
<tr>
<td>SCMA 29</td>
<td>100</td>
<td>220-224</td>
<td>3</td>
<td>1.787</td>
<td>0.42</td>
<td>0.441</td>
<td>0.047</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td>10.7</td>
<td>4.776</td>
<td>0.679</td>
<td>0.685</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Species of origin for the genetic markers were:

1 Cyanoramphus forbesi (Chan et al. 2005),

2 Calyptorhynchus latirostris (White et al. 2009), and

3 Ara macao (Olah et al. 2015).
Figure 1. Map of the study area in Tasmania, Australia. Populations where swift parrot genetic samples were collected were: North (BN; N = 32 genetic samples) and South Bruny Island (BS; N = 23), Buckland (BU; N = 13), Eastern Tiers (ET; N = 16), Meehan Range (ME; N = 8), Rheban (RH; N = 5), Southern Forests (SF; N = 6), and Wielangta (WI; N = 6).
Figure 2. Location and area of habitat occupied by breeding swift parrots based on occupancy models (red = nesting habitat, blue = foraging habitat) in eastern Tasmania, Australia between (a) 2009, (b) 2010, (c) 2011, (d) 2012, (e) 2013, and (f) 2014. The location of nesting by the swift parrot population varies annually depending on where food is available, and <30 % of the swift parrot population settles to breed on predator free islands in any given year. Reproduced with permission from Webb et al. (2017).

Figure 3. Sex specific spatial genetic autocorrelation analysis for swift parrots comparing correlations for females versus males across study sites. The figure shows pairwise genetic
distance \((rc)\) for increasing distance class sizes (blue), 95% confidence intervals (red) about the null hypothesis of a random distribution and 95% confidence error bars about \(rc\) as determined by bootstrapping (black).