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SUMMARY 21 

1. Ecosystem-based management requires predictive models of ecosystem dynamics. There 22 

are typically insufficient empirical data available to parameterise these complex models, 23 

and so decision-makers commonly rely on beliefs elicited from experts. However, such 24 

expert beliefs are necessarily limited because (1) only a small proportion of ecosystem 25 

components and dynamics have been observed; (2) uncertainty about ecosystem 26 

dynamics can result in contradictory expert judgements; and; (3) elicitation time and 27 

resources are limited.  28 

2. We use an ensemble of dynamic ecosystem models to extrapolate a limited set of stated 29 

expert beliefs into a wider range of revealed beliefs about how the ecosystem will respond 30 

to perturbations and management. Importantly, the method captures the expert 31 

uncertainty and propagates it through to predictions. We demonstrate this process and its 32 

potential value by applying it to the conservation of the threatened malleefowl (Leipoa 33 

ocellata) in the Murray mallee ecosystems of southern Australia.  34 

3. In two workshops, we asked experts to construct a qualitative ecosystem interaction 35 

network and to describe their beliefs about how the ecosystem will respond to particular 36 

perturbations. We used this information to constrain an ensemble of 109 community 37 

models, leaving a subset that could reproduce stated expert beliefs. We then interrogated 38 

this ensemble of models to reveal experts’ implicit beliefs about management scenarios 39 

that were not a part of the initial elicitation exercises.  40 

4. Our method uses straightforward questions to efficiently elicit expert beliefs, and then 41 

applies a flexible modelling approach to reveal those experts’ beliefs about the dynamics 42 

of the entire ecosystem. It allows rapid planning of ecosystem based management 43 

informed by expert judgement, and provides a basis for value-of-information analyses and 44 

adaptive management. 45 
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INTRODUCTION 46 

Ecological management relies heavily on expert beliefs (Kuhnert et al. 2010; Burgman et al. 47 

2011; Martin et al. 2012). Ecological systems are incredibly complex, with thousands of 48 

species interacting across space and time (Turchin 2003), and the time and resources 49 

available to study them are severely constrained. As a consequence, ecological communities 50 

and their dynamics are poorly understood (Lawton 1999; Kuhnert et al. 2010). Conservation 51 

managers nevertheless need to respond to multiple threats, often before experimental or 52 

observational evidence can be systematically collected. Expert beliefs allow managers to 53 

rapidly assess which management problems are most important, and which actions will best 54 

mitigate their effects (Kuhnert et al. 2010; Martin et al. 2012).  55 

Unfortunately, while expert beliefs can offer decision-makers timely information, they have 56 

two key limitations. First, expert beliefs are incomplete, in the sense that they do not 57 

systematically describe all the components and dynamics of an ecosystem. Experts have 58 

generally only observed a small subset of possible dynamics and by definition cannot have 59 

observed novel circumstances (e.g., responses to untested management interventions). 60 

Second, expert beliefs are always uncertain. While structured elicitation methods can reduce 61 

the magnitude of uncertainty, uncertain beliefs about system dynamics are inevitable 62 

(Kuhnert et al. 2010; Martin et al. 2012; Wintle et al. 2013). We stress that these factors are 63 

not exclusive to elicited expert beliefs, but they do limit the utility of expert opinion for 64 

conservation decision-making. Furthermore, because elicitation is time-consuming and expert 65 

experience is limited, the solution is not simply to elicit more information (Kuhnert et al. 66 

2010). 67 

Expert beliefs are particularly limited when managing whole ecosystems. Conservation is 68 

increasingly moving from a single-species focus to the management of whole ecosystems 69 

(Garrett 1992; Grumbine 1994). This reflects a more expansive definition of conservation 70 
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value that includes a greater range of biodiversity (Margules & Pressey 2000), the 71 

increasingly appreciated economic value of ecosystem processes and functions (Armsworth & 72 

Roughgarden 2001), and an awareness of how complex and indirect ecosystem interactions 73 

can determine the consequences of conservation actions (Raymond et al. 2010). As the 74 

components of an ecosystem being considered (its biotic and abiotic factors) increase in 75 

number, the number of ecosystem interactions and processes that need to be understood 76 

increase nonlinearly. We therefore need a method that can rapidly predict a wide range of 77 

ecosystem dynamics on the basis of uncertain and incomplete expert beliefs. This is the 78 

primary goal of this paper. 79 

At the centre of this method will be an ecosystem model. Most ecosystems can be readily 80 

described by a network of interactions among ecosystem elements (Pimm et al. 1991). These 81 

qualitative models describe direct relationships between important ecosystem components 82 

(species, or environmental & anthropogenic drivers) using cause-and-effect connections, but 83 

without specifying the magnitude or functional form of the relationship (Levins 1974). A 84 

single qualitative network can therefore be represented by a very large set of quantitative 85 

community models. Rather than choose any particular model in this set (e.g., the best-fit to 86 

known data), we represent the interaction network by a very large ensemble of models. Most 87 

importantly, we ensure that each model in this ensemble can recreate any stated beliefs that 88 

we have been able to elicit from experts. The resulting model ensemble can be used to make 89 

predictions about any aspect of ecosystem dynamics, in response to any modelled 90 

perturbation or management action.  91 

We describe and demonstrate this approach for the management of the malleefowl Leipoa 92 

ocellata (Gould 1840), a threatened bird species from Australia’s semi-arid and arid zones 93 

that has experienced a substantial decline over the last two decades, but for uncertain reasons 94 

(Benshemesh 2007; Benshemesh et al. 2007). We undertook two workshops to elicit stated 95 
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expert beliefs about the structure and dynamics of mallee ecosystems from a suite of relevant 96 

experts. Our method translates these limited and uncertain stated beliefs into a large 97 

ensemble of predictive, quantitative ecosystem models. This model ensemble can then be 98 

manipulated to answer new questions. The results of these simulations reveal expert beliefs 99 

about ecosystem dynamics that are not explicitly stated during the elicitation process.  These 100 

revealed expert beliefs (embodied in the predictions of the model ensemble) can be used to 101 

inform management decisions, and guide future research.  102 

MATERIALS AND METHODS 103 

Expert workshops 104 

Participants at two workshops were chosen to represent a cross-section of expertise on 105 

mallee ecosystems, including managers from nongovernmental conservation organisations; 106 

government; university researchers; ecological consultants; and conservation volunteers. 107 

Remnant mallee is broadly distributed across southern Australia, from New South Wales to 108 

Western Australia, but we focused our analyses on the Murray mallee ecosystem (MDD02 109 

IBRA subregion) that contains high densities of malleefowl in well-studied populations 110 

(Benshemesh 2007). As with any ecosystem, there are a number of competing hypotheses 111 

about the drivers of malleefowl decline, which have been variously ascribed to the effects of 112 

invasive mammalian predation, herbivore competition, habitat degradation, altered fire 113 

regimes and climate change (Benshemesh et al. 2007; Bode & Brennan 2011; Garnett 2012; 114 

Walsh et al. 2012). We sought to include participants who represented a range of perspectives 115 

on the relative priority of these threats.  116 

The first workshop constructed qualitative ecosystem interaction models. A set of important 117 

“ecosystem components” (species, or environmental drivers such as fire and rainfall), were 118 

joined by cause-and-effect connections. Connections were drawn if a change in one 119 

component was expected to directly cause a change in another component, with the sign of 120 
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the relationship indicating whether the change in the recipient component will be negative or 121 

positive. Only direct interactions were included in the model. For example, if rabbit 122 

populations have a positive effect on dingoes through predation, but a potentially negative 123 

effect through damage to vegetated habitat, we only included the direct positive interaction, 124 

and allowed the model to incorporate the negative effect via links from rabbits to vegetation, 125 

and from vegetation to dingoes (Baker et al. 2016a). We incorporated structural uncertainty  126 

by allowing the experts to define relationships that they believed existed, but were of 127 

unknown sign (i.e., they could be either positive or negative), or that they were unsure existed 128 

but would be certain of the sign if they did (i.e., they could be zero or positive). A full 129 

description of the workshop and the results can be found in Supplementary Information 1.  130 

The second workshop elicited uncertain information from participants that could be used to 131 

constrain the predictions of the qualitative interaction network. In 14 different scenarios, an 132 

abiotic or anthropogenic driver from the qualitative model changed by a particular magnitude 133 

(e.g., rainfall decreased by 75% for one year), following approximately 10 years of relatively 134 

constant ecosystem conditions. We explained that this period of unchanging conditions was to 135 

ensure that any large prior perturbations (e.g., a recent fire) were no longer playing a large 136 

role in the ecosystem dynamics. Experts were asked to quantitatively describe how a different 137 

ecosystem component would respond over the next 5 years, a length of time considered long 138 

enough to reveal dynamics over the short- to medium-term. The participants submitted their 139 

answers by drawing “envelopes” on a timeseries graph that described their belief and 140 

uncertainty about the response (Figure 1). While participants were encouraged to draw 141 

envelopes for all scenarios, they were free to not answer questions they felt were beyond 142 

their experience or intuition. A full description can be found in Supplementary Information 2.  143 

When eliciting information from multiple experts, evidence shows that iterative rounds of 144 

anonymised feedback between experts (Kuhnert et al. 2010) improves the accuracy of 145 
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estimates (Rowe & Wright 1999). We chose to elicit information from experts independently, 146 

in a single round. This allowed us to maximise the number of scenarios we could consider in 147 

one workshop, since we are primarily interested in the process of extrapolating from a range 148 

of stated beliefs, rather than eliciting the most accurate information. 149 

Ensemble ecosystem modelling 150 

When predicting the future dynamics of a complex, nonlinear system, it is better to base 151 

decisions on the ensemble predictions of a large number of plausible models, rather than rely 152 

on a single model, even if that single model offers the best fit to the available validation data 153 

(Leith 1974). Ensemble prediction is an essential component of modern meteorology and the 154 

associated assessment of environmental risks, with the IPCC’s multi-model predictions of 155 

global climate representing the best-known application of the technique (Stocker 2014). A 156 

recent variant of the approach is ensemble ecosystem modelling (EEM; Dexter et al. 2012; 157 

Gårdmark et al. 2013; Bode et al. 2015; Hunter et al. 2015), which applies the approach to 158 

models of ecosystems. Following our two workshops we generated an ensemble of models 159 

whose structure matched the beliefs of the first expert workshop, and whose 160 

parameterisations were consistent with expert beliefs (see Supplementary Figure S1 for a 161 

schematic overview of the process). 162 

For EEM, we define a large ensemble of models with a given qualitative structure (in our case, 163 

the interaction network identified in our first workshop). We use a system of Lotka-Volterra 164 

(LV) equations, where the amount of a component i in an ecosystem at time t (the abundance 165 

or density of a species, the volume of rainfall, etc) is defined as 𝑁𝑁𝑖𝑖(𝑡𝑡). This amount changes 166 

according to the component’s internal dynamics, and its interactions with other components: 167 

𝑑𝑑𝑁𝑁𝑖𝑖
𝑑𝑑𝑡𝑡

= 𝑟𝑟𝑖𝑖𝑁𝑁𝑖𝑖 + �𝑎𝑎𝑖𝑖𝑖𝑖𝑁𝑁𝑖𝑖𝑁𝑁𝑖𝑖

𝐶𝐶

𝑖𝑖=1

 168 
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(Equation 1) 169 

where C is the number of components in the ecosystem, 𝑟𝑟𝑖𝑖 is a component’s intrinsic growth 170 

rate, and 𝑎𝑎𝑖𝑖𝑖𝑖  are interaction coefficients describing the per-unit effect of component j on each 171 

unit of component i. The interaction matrix A (Figure 2a) contains the elements 𝑎𝑎𝑖𝑖𝑖𝑖  which 172 

match the sign structure of elicited interaction networks (Figure 2b). LV models are designed 173 

to describe the dynamics and stability of foodwebs (Pimm et al. 1991; Turchin 2003) but can 174 

be extended to describe abiotic components. An environmental driver such as rainfall is not 175 

affected by any other components of the ecosystem (𝛼𝛼𝑖𝑖𝑖𝑖 = 0 for 𝑖𝑖 ≠ 𝑗𝑗). Its intensity is 176 

therefore defined by its stable equilibrium value, determined by the ratio of 𝑟𝑟𝑖𝑖 and 𝛼𝛼𝑖𝑖𝑖𝑖. 177 

We construct an ensemble of 109 different models by choosing random values for growth 178 

rates and interaction terms. Growth rates are chosen at random from an inverse distribution 179 

(i.e., 1/(𝑟𝑟𝑖𝑖 + 1) ~ 𝑈𝑈(0,1)), allowing them to take any positive value. The magnitudes of the 180 

interaction coefficients are chosen from unit uniform distributions (𝛼𝛼𝑖𝑖𝑖𝑖~𝑈𝑈(0,1)), with their 181 

signs assigned according to expert beliefs. Latin hypercube sampling can generate random 182 

numbers that efficiently sample this high-dimensional parameter space. Although the choice 183 

of bounded distributions for the interaction coefficients may seem limiting, any LV system can 184 

be rescaled to produce an ecosystem model with parameters within these bounds 185 

(Supplementary Information 3). In addition, simulations show that model predictions are 186 

robust to the distributions from which parameters are chosen (Baker et al. 2016b). 187 

We then use expert beliefs about ecosystem dynamics to constrain the model ensemble. First, 188 

we remove any models from the ensemble that are not “viable”; that is, where not all the 189 

species that were listed can persist at equilibrium. To assess viability, we calculate the 190 

equilibrium state of the ecosystem, and determine whether all species have positive 191 

abundances (Baker et al. 2016b). In altered ecosystems, it may not be certain whether species 192 

that are currently extant will be able coexist over the medium to long term, and in these 193 
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circumstances the equilibrium coexistence condition will be inappropriate. For example, 194 

malleefowl have coexisted with foxes for approximately 190 years, but malleefowl have a 195 

10% probability of becoming extinct in the next 100 years (according to IUCN Red List 196 

Criterion E for Vulnerable), with foxes listed as a key threatening process. They may therefore 197 

be on a long trajectory towards extinction, and unable to persist alongside foxes. In these 198 

latter cases, we could simulate the models for the finite length of observed coexistence (e.g., 199 

190 years), rather than calculate equilibrium abundances. We would then remove any models 200 

where at least one species declines below a threshold (e.g., malleefowl fall below 0.1% of their 201 

initial abundance). Given that all species eventually become extinct, a finite coexistence time 202 

is probably a more realistic constraint on the model ensemble, although it is more 203 

computationally demanding. 204 

Next, we simulate the dynamics of each model in response to the perturbations (described in 205 

the second workshop), using the equilibrium as the initial condition. We compare the 206 

predicted changes in species’ abundance to the uncertain envelopes drawn by the workshop 207 

participants, and penalise any models that disagree with the expert beliefs. We measure the 208 

“performance” of each model in the ensemble as shown graphically in Figure 1, by calculating 209 

the overlap between a model and the expert beliefs: for every time step the model falls within 210 

any expert envelope, its performance increases by a constant amount. Intersecting with an 211 

envelope for twice as long yields twice the benefit; intersecting two envelopes provides twice 212 

as much benefit as intersecting a single envelope. Under this measure of model performance, 213 

we include only the best 5% of models in the ensemble, an approach conceptually similar to 214 

Approximate Bayesian Computation (Beaumont 2010). Once the best performing models are 215 

identified, we calculate the proportional change in Shannon entropy associated with each 216 

model coefficient. This change measures the amount of information imparted to each 217 

uncertain coefficient by the set of envelope constraints (Supplementary Figure S2). 218 
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Analyses 219 

The remaining ensemble of models encapsulates the experts’ beliefs – revealed as well as 220 

stated – about the dynamics of the mallee ecosystem. We undertake two sets of analyses to 221 

illustrate the potential of EEM, and the flexibility of revealed expert opinion.  222 

Our first set of analyses illustrates how limited stated expert beliefs can be extrapolated to 223 

construct revealed expert beliefs. In our second workshop we asked questions about 14 224 

different ecosystem perturbation scenarios (Supplementary Information 2). We used EEM to 225 

answer three additional perturbation questions about malleefowl populations that were 226 

purposely not explored in the workshop: (1) How will malleefowl abundance change in 227 

response to a 25% increase in dingo abundance over 5 years? (2) How will malleefowl 228 

abundance change in response to a 25% increase in the cat population over 5 years? (3) What 229 

will be the effect of additional annual migration of malleefowl into a population, equal to 10% 230 

of the equilibrium population, as a consequence of either natural dispersal, or a managed 231 

release from captive populations? EEM allows us to extrapolate experts’ revealed beliefs 232 

regarding these three questions, by simulating the response of each model in the ensemble. 233 

We then extract and graph the range of malleefowl population responses, with the ecosystem 234 

simulated in weekly timesteps for a 5 year period. This time horizon matched the experts’ 235 

stated beliefs, and is long enough to reflect the approximate timescale of malleefowl funding 236 

(e.g., the Malleefowl Management Committee funding lasted 7 years; the Australian Research 237 

Council Linkage grant that funded this work lasted 3 years). We repeat each simulation using 238 

both the unconstrained and constrained model ensemble (i.e., the set of models before and 239 

after we consider the envelopes), contrasting these simulations to illustrate the value of 240 

stated expert beliefs. 241 

Our second set of analyses illustrates how EEM can offer management support that is formal 242 

and ecosystem-based, but is also rapid and efficient. The malleefowl National Recovery Plan 243 
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(NRP; Benshemesh 2007) lists six important threats to malleefowl, and we use the model 244 

ensemble to predict the impact of mitigating each in turn over 5 years. The key threats of the 245 

NRP and the specific details of our model simulations are: (1) Habitat loss and fragmentation. 246 

We assume that active restoration results in an exogenous 15% increase in suitable habitat 247 

(the seedling & vegetation components). (2) Competition by grazing herbivores. We model the 248 

effects of reducing feral goats by 30% through mustering, and rabbit populations by 30% 249 

through baiting. These are reasonable outcomes for ecosystems like the mallee (Parkes et al. 250 

1996; Cooke 2010). (3) Predation by introduced foxes. We assume that effective baiting can 251 

reduce fox populations by 95%, in line with best practice in similar ecosystems (Saunders & 252 

McLeod 2007). (4) Predation by introduced cats. We model the effects of baiting that targets 253 

cat populations, reducing them by 85%. Reductions of this magnitude have been previously 254 

achieved in non-insular arid and semi-arid ecosystems (Algar & Burrows 2004). (5) Fire 255 

intensity and severity. Both dimensions of fire affect malleefowl negatively, and we model the 256 

effects of currently planned management changes to public land in the Murray mallee, which 257 

will increase the area burned by fire by at least 50% from current levels. (6) Disease and 258 

inbreeding. We assumed that these two factors act to reduce population growth rates, 259 

generally through increased mortality (Keller 2002). Although it is not clear how these threats 260 

would be addressed by managers, we assume that the benefit of managing disease and 261 

inbreeding will increase the population growth rate by 10%. In each case, we use EEM to 262 

simulate the range of consequences for malleefowl abundance. We note, however, that the 263 

results will reflect the above assumptions about management effectiveness, which are only 264 

based on a limited literature survey, and will vary with location and management actors. 265 

RESULTS 266 

The first workshop generated three different interaction networks that connected similar 267 

ecosystem components in slightly different configurations (Supplementary Information 1). For 268 
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the analyses that follow, we analyse the network produced by the first expert group (Figure 269 

2). This network connects 14 ecosystem components with 80 direct interactions (in the 270 

matrix, we ignore intraspecific interactions and only consider off-diagonal elements). While 271 

this creates a complex interaction network (Figure 2b), it is fewer than half of the 182 272 

possible direct connections, and the dynamics of many components are therefore only 273 

indirectly coupled. The majority (65%) of these direct interactions were qualitatively certain 274 

(either definitely positive or definitely negative), with the remainder being either of uncertain 275 

existence but known sign (28.8%), or of unknown existence and sign (6.2%).  276 

In the second workshop, we were able to elicit 62 beliefs from 13 experts about 14 ecosystem 277 

perturbation scenarios (Supplementary Figure S6). Every scenario received between 2 and 7 278 

different expert beliefs. The average expert was not able or willing to describe their beliefs 279 

about most scenarios, or did not have sufficient time (34% of 182 potential beliefs were 280 

elicited). While opinions about some scenarios were quite consistent (e.g., all experts believe 281 

that cat abundance will increase during fox baiting), others differed markedly (e.g., fox 282 

abundance could increase or decrease during overgrazing).  283 

On the basis of the network structure, the viability constraint and the elicited envelopes, we 284 

were able to reduce the original set of 109 LV models down to a ensemble of approximately 285 

105 models. The substantial constraints offered by the experts’ beliefs (to <0.01%) were 286 

heterogeneously distributed across the unknown interaction parameters. The proportional 287 

change in Shannon entropy associated with each coefficient indicates that, while three-288 

quarters of the coefficients only experienced a small reduction (<20%) in entropy, the 289 

coefficients associated with malleefowl, vegetation, predators and grazers experienced a large 290 

(>80%) reduction (Supplementary Figure S2). This concentration of information on a few 291 

parameters reflects the focus of the elicitation scenarios on the interactions between 292 

malleefowl and predators, and between malleefowl, vegetation and herbivores. Despite the 293 
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reduction in the size of the model ensemble and the increase in information, the retained 294 

models are enormously variable. Although all are based on the same interaction network, and 295 

can replicate all stated expert beliefs, their parameterisations are vastly different 296 

(Supplementary Figure S3), and they therefore represent alternative hypotheses about what 297 

ecosystem dynamics could generate the stated expert beliefs. Models with as many as 16 298 

structural differences were able to recreate the same dynamics. For example, about half of the 299 

models retained in the ensemble considered fire to have a positive effect on cat abundance; 300 

the other half considered it to have a negative effect. As a result of this variability, the 301 

correlation structure of the retained parameterisations is indistinguishable from purely 302 

random data, suggesting that the models remaining in the ensemble are dynamically very 303 

different from one another. The predictions of these retained models are similarly variable – 304 

species’ responses to perturbations are generally of ambiguous sign. Thus some of the 305 

ensemble predicts increases in a given component, while others predict decreases. The 306 

magnitude of the changes also varies by more than an order of magnitude (e.g., some models 307 

predict a 10% increase in abundance, some predict a 100% increase).  308 

Despite this variability, the first set of analyses shows that constraining the model ensemble 309 

with expert opinions reveals additional and informative expert beliefs. Figure 3 shows the 310 

change in malleefowl abundance that would result from an increase in dingo abundance; an 311 

increase in cat abundance; and increased malleefowl immigration. The grey envelopes show 312 

that the set of viable models is incredibly variable before they are constrained by the stated 313 

expert beliefs. This is even true when, as is the case for increased immigration (Figure 3c), the 314 

changes have a direct and positive impact on the malleefowl population. The blue envelopes 315 

show the revealed expert opinions, which are much narrower than the original set of possible 316 

trajectories. An increase in dingoes to the ecosystem will have an uncertain effect on 317 

malleefowl abundances, ranging from a decrease of 20% to an increase of 30% (Figure 3a). 318 

This range of revealed expert beliefs matches the uncertainty surrounding the effect of top-319 
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predators on prey species in the literature, particularly in Australia’s semi-arid rangelands 320 

(Allen et al. 2013). Our other revealed expert beliefs show more confidence in the effects of 321 

ecosystem perturbations: if cat populations increase, malleefowl will most likely decline (a 0–322 

15% decrease; Figure 3b); if malleefowl immigration increases, malleefowl populations will 323 

also experience a small increase (0–20%; Figure 3c). 324 

Our second set of analyses uses EEM to calculate experts’ revealed beliefs about the benefits 325 

of management actions that affect each NRP threat (Figure 4). The most striking result of 326 

these revealed beliefs is their uncertainty. While each management action could benefit 327 

malleefowl populations, the combined effect of direct and indirect ecosystem interactions 328 

could also result in a perverse negative outcome. Both habitat management and grazing 329 

management appear as likely to damage malleefowl populations as they are to benefit them. 330 

The revealed beliefs are less ambiguous about the effects of managing cat predation (likely 331 

positive) or an increase in fire intensity/frequency (likely negative), but the 95% EEM 332 

confidence intervals for both interventions still overlap zero. The sole exception to this 333 

qualitative uncertainty is the revealed belief about the positive effects of addressing 334 

inbreeding and disease in the populations. Interestingly, the management of foxes is arguably 335 

the most commonly undertaken action to benefit malleefowl, and could have the largest 336 

positive or the largest negative effects on malleefowl abundance. 337 

DISCUSSION 338 

EEM allows limited stated expert beliefs to be extrapolated, revealing implicit beliefs about 339 

the broader dynamics of an ecosystem and its response to perturbations. Our application of 340 

these methods to malleefowl conservation produced a quantitative decision-support tool after 341 

two workshops and a relatively small amount of computational analysis. The method allows 342 

beliefs to be elicited at minimal cost, and therefore reduces burden on experts. It translated 343 

expert beliefs into a quantitative tool that we used to rapidly estimate the expected benefit 344 
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and uncertainty of actions aimed at mitigating each threat. The total cost of the two 345 

workshops required to do this was approximately $10,000 (2015 Australian dollars).  346 

The EEM process is computationally demanding but conceptually straightforward, and it 347 

offers decision-makers three primary benefits. First, EEM reveals a much broader range of 348 

expert beliefs about their ecosystems, without requiring them to answer an enormous 349 

number of questions. This process provides a logical and internally-consistent method of 350 

extending expertise to new and more complex problems. Once a few expert beliefs have been 351 

elicited, the decision-maker can ask an enormous number and range of questions at 352 

essentially no cost: expertise on tap. This provides substantial efficiencies: when eliciting 353 

information from 13 experts about a 14-component interaction network, there are 2,548 354 

single-perturbation questions that can be asked. Our half-day workshop answered 63 of these 355 

questions; a desktop computer use EEM to answer the remainder in less than one minute (the 356 

model ensemble took approximately one day to create, but this can be pre-computed).  357 

Second, we elicited stated beliefs about ecosystem dynamics by asking experts to construct 358 

interaction networks, and to draw uncertain envelopes describing the response of different 359 

components to perturbations. These forms of elicitation are simple and intuitive since both 360 

interaction networks and uncertain timeseries data are common elements of undergraduate 361 

biology degrees, ecological reports, and journal articles. In contrast, the alternative method of 362 

eliciting information about dynamic networks is to ask individual questions about the model 363 

parameters (Kuhnert et al. 2009), for example, about per-capita growth rates, interaction 364 

coefficients, or conditional probabilities for Bayesian networks (Martin et al. 2012). In 365 

contrast to our timeseries questions, these require difficult and numerically-precise 366 

statements about implicit and unobservable ecological quantities, and impose a high 367 

elicitation burden on experts. EEM allows these more difficult quantities to be computed from 368 

the envelopes. 369 
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Third, EEM can consider questions that are difficult or impossible to engage with using 370 

standard expert elicitation. Expert observations and beliefs concentrate on a subset of 371 

ecosystem components and dynamics: easily-observed species, recent perturbations, previous 372 

management actions, and contemporary environmental and climatic conditions. If we accept 373 

that ecosystems are in part driven by the deterministic interactions of a connected system 374 

with consistent dynamics, then observed phenomena can offer insights into unobserved 375 

events. Thus EEM allows us to extend stated expert beliefs to a much broader set of 376 

predictions about ecosystem dynamics and management actions. We expect that such 377 

predictions will be uncertain, and accept that they will often be ambiguous (e.g., Figure 4). 378 

Our analyses demonstrate that an EEM approach, constrained by a reasonable number of 379 

stated expert beliefs, can provide useful predictions about the performance of different 380 

management actions (Figure 4). For example, the beliefs elicited from experts indicate that 381 

managing diseases or cat abundance are very likely to improve malleefowl populations, and 382 

that an increase in fire intensity and severity is likely to produce a negative impact. In 383 

contrast, the most commonly undertaken management action on behalf of malleefowl – fox 384 

baiting – has an entirely uncertain impact, although it could potentially offer the greatest 385 

benefits. These results concur with the deep uncertainty highlighted by previous modelling 386 

and empirical studies on fox predation (Walsh et al. 2012) and fire dynamics (Benshemesh 387 

2007). They reveal that, despite more than a century of conservation research on malleefowl 388 

(Mellor 1911), we remain deeply uncertain about the impact of management actions on this 389 

threatened species. 390 

Even when constrained by the expert-elicited timeseries, the forecasts made by our model 391 

ensemble are enormously variable, to the point of being qualitatively uncertain (Figure 3, 4). 392 

This variation is partly the result of over-fitting – we are estimating 108 free parameters 393 

using timeseries data on 14 perturbations – but this does not necessarily mean that our 394 
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models are too complicated. The interaction network is complex (Figure 2), and so our models 395 

must also be complex if they aim to offer a fulsome mechanistic explanation of how ecosystem 396 

structure drives dynamics. Explicitly modelling the complexity of the interaction network is 397 

valuable for two reasons. First, management outcomes are often heavily affected by indirect 398 

interactions with the broader network (Raymond et al. 2010; Dexter et al. 2012; Buckley & 399 

Han 2014). Our ensemble offers a range of models that reproduce the stated expert beliefs, 400 

but offer competing hypotheses about which direct and indirect interactions produced them 401 

(Supplementary Figure S3). These competing hypotheses make different predictions about 402 

future dynamics, and this is partly responsible for the highly variable predictions. Second, in 403 

addition to forecasting future dynamics, a central goal of this method is to extrapolate from a 404 

limited set of stated beliefs, to create revealed beliefs about the broader ecosystem. A more 405 

parsimonious model might offer more accurate predictions about the future dynamics of 406 

observed ecosystem components, but it would be unable to extrapolate across the ecosystem. 407 

Although we do not detail the required steps here, a model ensemble can answer a much 408 

wider range of questions. To give a few examples for malleefowl conservation: 409 

• The mallee contains threatened species other than malleefowl. Will management actions 410 

that benefit malleefowl (e.g., particular fire regimes) detrimentally affect the viability of 411 

other species (Driscoll et al. 2016)? EEM models the future dynamics of multiple species 412 

simultaneously, identifying conservation trade-offs. 413 

• The varying amount of uncertainty in different future predictions (Figure 3 & 4), and 414 

model parameters (Supplementary Figure S2 & S3) could be used to undertake a value-of-415 

information analysis (Runge et al. 2011), focusing research on reducing uncertainties that 416 

most strongly hamper sound decision making and consequent improvements in outcomes.  417 

• Monitoring data – particularly when gathered in response to perturbations or 418 

management interventions – can be used with EEM in the same manner as the stated 419 
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expert beliefs: to further constrain the model ensemble. Applied iteratively with VOI, 420 

managers can use the EEM method to undertake short-term active adaptive management 421 

(Benshemesh & Bode 2011), that explicitly considers ecosystem interactions. 422 

Ecosystem dynamics are often modelled with sets of ordinary differential equations (Turchin 423 

2003), and there are reasons to believe that our formulation may offer robust insights into 424 

future dynamics. However, two factors in particular should be kept in mind when interpreting 425 

the results: ecosystems are unlikely to be perfectly represented by the functional forms of the 426 

Lotka-Volterra equations, and ecosystem dynamics are stochastic and spatial. This is 427 

particularly true in arid environments, where stochastic and spatially-explicit models of 428 

environmental covariates are generally considered essential (Cadenhead et al. 2015). Despite 429 

these problematic assumptions, there are reasons to hope that EEM can offer useful 430 

predictions. First, we asked our experts to describe dynamics in the vicinity of the ecosystems’ 431 

equilibrium point, and over short time periods (5 years). In this set of states, the precise 432 

functional form of the models (e.g., Lotka-Volterra) is much less important, since many 433 

different functional forms share the same dynamics (Raymond et al. 2010; Melbourne-434 

Thomas et al. 2012). It may be appropriate to further account for this issue by eliciting and 435 

predicting dynamics over shorter time periods; by discounting the performance of models in 436 

the more distant future; by constructing model ensembles using more than one functional 437 

form; or by constructing models with alternative plausible interaction structures. Although 438 

we elicited three different interaction networks, their structure was very similar, as experts 439 

were allowed to move freely between the groups. This non-independence makes the three 440 

networks unsuitable for a structural sensitivity analysis. Second, although we model a 441 

stochastic ecosystem with an ensemble of deterministic models, the technique of ensemble 442 

modelling was adopted in meteorology precisely because it reduces inaccuracies caused by 443 

sub-grid-scale stochasticity and unmeasured variation in initial conditions (Leith 1974). We 444 

attempt to further reduce the influence of stochasticity by modelling ecosystem components 445 
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with large abundances, as demographic stochasticity will have a smaller effect on the 446 

dynamics of large numbers of individuals (Gustafsson & Sternad 2013).  447 

EEM is part of a field of ideas for making predictions about complex, uncertain, nonlinear 448 

systems. The approach is heavily based on ideas from qualitative modelling (QM) in both its 449 

loop-analysis (Levins 1974; Dambacher et al. 2003) and computational forms (Raymond et al. 450 

2010; Dexter et al. 2012; Melbourne-Thomas et al. 2012). These QM approaches will offer 451 

complementary or superior perspectives to EEM for many problems, particularly when 452 

smaller interaction networks are sufficient (loop QM), or when elicited constraints and 453 

predictions concern short-term and small-magnitude perturbations (computational QM). 454 

“Sloppy modelling” analyses, which are increasingly influential in physics and systems 455 

biology, are another parallel set of ideas. This approach can offer deeper insights into the 456 

most important components and parameters in the system, rather than simply predicting the 457 

consequences of perturbations (Gutenkunst et al. 2007). Finally, model ensembles have 458 

proven invaluable in geophysical fluid dynamics (Leith 1974) and complex and nonlinear 459 

statistical modelling (Beaumont 2010). Both the motivation and justification for this approach 460 

to prediction can be found in reviews of these fields, as can a range of extensions that will add 461 

strength and robustness to our approach. 462 

Resource and time constraints force conservation science to make important management 463 

decisions on the basis of limited information. Expert beliefs provide essential guidance in the 464 

face of such logistical constraints, but the elicited information is limited and uncertain. 465 

Conservation is also increasingly focused on making decisions that consider the highly 466 

interconnected nature of ecosystems, and the indirect and counter-intuitive dynamics that 467 

these connections create. Ecologists can construct interaction networks that outline such 468 

dynamics, but these cannot make the necessary quantitative predictions. Ensemble Ecosystem 469 

Modelling offers one solution to both these problems. By merging expert beliefs and 470 
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qualitative modelling, EEM can systematically extrapolate a limited number of stated expert 471 

beliefs into a broader range of revealed implicit beliefs. Not only does this make expert-472 

supported decisions more efficient and quantitative, it also provides a framework for 473 

extending them into unobserved future scenarios and untested management actions. The 474 

method therefore allows management options to be quickly and defensibly prioritised, and 475 

does so using a framework that explicitly takes ecosystem interactions and indirect effects 476 

into account. EEM therefore helps to address three key obstacles to effective conservation 477 

action: complex ecosystem interactions, limited information, and limited resources.  478 
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SUPPORTING INFORMATION 602 

Additional supporting information can be found online in the supporting information tab for 603 

this article: 604 

Supplementary Information 1: Methods for eliciting interaction networks. 605 
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Supplementary Information 2: Methods for eliciting ecosystem dynamics. 606 

Supplementary Information 3: Rescaling methods for Lotka-Volterra systems. 607 

Supplementary Table S1: Participants and affiliations at the first workshop. 608 

Supplementary Table S2: Participants and affiliations at the second workshop. 609 

Supplementary Figure S1: Schematic overview of belief modelling process. 610 

Supplementary Figure S2: Information contained in stated expert beliefs. 611 

Supplementary Figure S3: Similarity of satisfactory ecosystem models. 612 

Supplementary Figure S4: Example ecosystem scenario shown to workshop participants. 613 

Supplementary Figure S5: Example ecosystem scenario with expert opinion superimposed. 614 

Supplementary Figure S6: All ecosystem scenarios with all stated expert beliefs 615 

superimposed. 616 

 617 

FIGURE LEGENDS 618 

Figure 1: Envelope method for eliciting expert beliefs and constraining the model ensemble. 619 

Grey shaded area indicates a 3 year period of overgrazing of mallee habitat, where native and 620 

introduced herbivore abundance was 200% of its long-term average. Experts were asked to 621 

draw envelopes that described their belief in the dynamics of the fox populations (y-axis) 622 

during this window. Two experts chose to answer this question; the coloured envelopes 623 

indicates their uncertain beliefs. The lines indicate the predictions of 4 viable models in the 624 

ensemble. One (green) is able to entirely replicate at least one expert belief; two (blue lines) 625 

are able to partly replicate the beliefs; one (black line) is unable to recreate them at all. 626 

Figure 2: (a) Sign-structured interaction matrix elicited during the first workshop. Elements 627 

of the matrix indicate the qualitative direct impact that an increase in the component on the 628 

row would have on a component on the column. For example, an increase in rabbit abundance 629 

(row 11) will have a direct positive impact (+1) on fox abundance (column 5). +1 indicates a 630 

definite positive direct effect; -1 indicates a definite negative; 0 indicate a definite zero direct 631 

impact; +2 indicates either positive or zero; -2 indicates either negative or zero; 3 indicates 632 

either positive or negative. All diagonal values are negative to indicate density-dependence. 633 

(b) Graphical description of the interaction network shown above. This is the format in which 634 
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information on the structure of the interaction network was elicited from experts. Arrows 635 

indicate direct interactions with the sign indicated at the mid-point of each arrow. 636 

Figure 3. Change in malleefowl abundance predicted by the unconstrained model ensemble 637 

(“unc”: grey lines, with grey region enclosing 95% of the ensemble predictions) and expert 638 

belief-constrained ensemble (“con”: blue lines and 95% region), following a perturbation 639 

made to another ecosystem component (black line). (a) Malleefowl abundance changes during 640 

a 25% increase in dingo abundance over 5 years. (b) Malleefowl abundance changes during a 641 

25% increase in cat abundance over 5 years. (c) Malleefowl abundance changes during 642 

increased malleefowl immigration equal to 10% of the equilibrium population annually. 643 

Figure 4: Predictions of the model ensemble when management interventions of reasonable 644 

intensity are applied to the 6 main threats in the malleefowl National Recovery Plan. Upper 6 645 

plots show the relative change in malleefowl populations through time when each action is 646 

taken (shown in title), for a random sample of 200 models from the constrained ensemble. 647 

The lower plot synopsises the relative change of malleefowl population after 5 years (95% 648 

confidence intervals of final populations, with the mean shown by a circle). 649 

Supplementary Figure S1: Schematic overview of how Ensemble Ecosystem Modelling 650 

(EEM) can be used to translate stated expert beliefs into revealed beliefs. The left-hand 651 

column describes the steps taken, the right hand column indicates where the information 652 

from each step is sourced from, the central column provides a diagrammatic flow-chart of the 653 

process. 654 

Step 1 is to elicit a qualitative ecosystem interaction network from experts, which lists 655 

important ecosystem components and their direct cause-and-effect relationships. Step 2 is to 656 

transform this qualitative model into a large ensemble of initial quantitative Lotka-Volterra 657 

(LV) models, indicated by the black squares. Each model comprises a set of equations 658 

corresponding to the components of the interaction network, with the parameters chosen at 659 

random. Step 3 is to elicit a set of stated belief envelopes from experts, which describe their 660 

beliefs about how a particular ecosystem component will respond to a perturbation in a 661 

different ecosystem component. The degree of uncertainty surrounding this belief is indicated 662 

by the width of the envelopes. Step 4 is to use these stated belief envelopes to retain only 663 

those models in the ensemble that most closely recreate expert beliefs about system dynamics 664 

(green arrows), discarding any models which do not replicate these beliefs (red arrows). The 665 

envelopes therefore act as a filter or constraint on the model ensemble. The remaining 666 

quantitative LV models represent an ensemble of quantitative ecosystem models that 667 
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concur with both sets of expert beliefs: the interaction structure of the qualitative networks, 668 

and the dynamic responses of the different envelopes. Step 5 is to interrogate the remaining 669 

ensemble of models, to produce implicit revealed beliefs about the ecosystem. These will 670 

include its response to perturbations, the relative priority of different management options, 671 

and the relative uncertainty surrounding different ecosystem processes and components. 672 

Supplementary Figure S2: Information contained in the stated expert beliefs, expressed by 673 

the change in Shannon entropy H of the interaction coefficients. To calculate H, we collect the 674 

values of each coefficient into 20 bins of width 0.05, where 𝑛𝑛𝑖𝑖 is the number of coefficients 675 

between 0.05(𝑖𝑖 − 1) and 0.05𝑖𝑖. We then normalise these bins so that 𝑝𝑝𝑖𝑖 = 𝑛𝑛𝑖𝑖/∑𝑛𝑛𝑖𝑖, and use 676 

Shannon’s definition: 677 

𝐻𝐻 = −�𝑝𝑝𝑖𝑖 log2 𝑝𝑝𝑖𝑖

20

𝑖𝑖=1

. 678 

The initial information associated with each coefficient (selected from a uniform distribution) 679 

is approximately 𝐻𝐻 = 4.32. Once the expert beliefs are used to constrain the model ensemble, 680 

we are left with a subset of coefficient values with a lower or equal entropy. The decrease in 681 

entropy reflects the decrease in uncertainty caused by the constraints. Upper panel shows the 682 

proportional change in entropy for the distributions of each parameter in the interaction 683 

matrix (Figure 2a). A small proportion of coefficients have gained a large amount of 684 

information from the constraint process, while the majority have experienced a small 685 

improvement. The two lower panels detail two examples from the upper panel. Red bars 686 

indicate the original coefficient values in the unconstrained model ensemble (uniformly 687 

distributed); grey bars indicate the distribution in the constrained model. In the lower left 688 

hand panel (the direct effect of rainfall on fires), the constraints indicate that the coefficient is 689 

likely to be closer to one than zero. In the lower right hand panel (the direct effect of dingoes 690 

on kangaroo abundance), the model constraints offered little information, and the coefficient 691 

distribution remains relatively unchanged. 692 

Supplementary Figure S3: (a–c) Scatter plots of interaction coefficient parameters for three 693 

randomly selected pairs of models that satisfy all stated expert beliefs. Blue markers 694 

represent the value of interaction parameter (e.g., 𝛼𝛼4,6 measures the per-capita / per-capita 695 

effect of  dingoes on cats) in the two models. Red circles highlight structurally uncertain 696 

parameters. Note that the raw parameter correlation will appear artificially high because the 697 

signs of the different parameters are generally known. We therefore report the correlation of 698 

the absolute value of the parameters. (d) Scatter plot of the correlation results for 500 699 
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randomly selected model pairs. The black markers indicate Pearson’s correlation coefficient 700 

(y-axis), and the significance of the correlation observed (x-axis). Green shaded area indicates 701 

the null expectation if these parameters were simply random numbers selected from a 702 

uniform distribution U(0,1). The two sets of correlation statistics are indistinguishable, 703 

indicating that the retained models in the ensemble are highly variable, and do not offer a 704 

single description of the ecosystem dynamics. 705 

Supplementary Figure S4: An example ecosystem scenario, as used in the second workshop. 706 

Modelled dynamics correspond to a model based on Figure 2. Scenarios are defined by two 707 

factors: (1) the dynamics of a particular ecosystem species, shown by coloured lines. Each line 708 

offers an alternative response of the species to the perturbation. (2) The dynamics of a 709 

particular ecosystem driver, shown by coloured bars. In this case the driver is rainfall. In 710 

response to a perturbation in the driver, the abundance of the species may change. Experts 711 

were asked to choose between these alternatives, or to offer another option. 712 

Supplementary Figure S5: As in Supplementary Figure S4, the bars indicate the change in an 713 

ecosystem driver. However in this figure the grey envelope indicates the opinions of an expert 714 

from the workshop.  715 

Supplementary Figure S6: The aggregated results of the expert answers to each 716 

perturbation scenario (indicated in the title). Each expert has an assigned colour, and these 717 

are transparently overlaid on the timeseries to assess where experts agree and disagree on 718 

the likely consequences of an ecosystem perturbation. Note that since not all experts 719 

answered all questions, each scenario has a different number of responses. 720 
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