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ABSTRACT 11 

 12 

Many species have adapted successfully to traditionally cultivated agricultural environments but, as 13 

production systems are intensified, this adaptation is reaching its limits. Conflicting facets of 14 

sustainability compound the problem. Here we describe how reductions in the use of water in rice 15 

fields is compromising the persistence of the largest known breeding population of the Australasian 16 

Bittern (Botaurus poiciloptilus), a globally endangered waterbird. In fields with traditional, early 17 

permanent water, bitterns began nesting around 77 days after inundation, with 65% of nests having 18 

sufficient time for all chicks to fledge before harvest. Our breeding success model showed that all 19 

nests could potentially be successful if permanent water was applied by early November, with a 20 

ponding period – the phase when fields are flooded – of at least 149 days. The modelling suggests 21 

that successful bittern breeding was unlikely where rice was grown using new water-saving methods 22 

– drill-sown and delayed permanent water – because the ponding period is too short. These 23 

mailto:mherring@murraywildlife.com.au


2 
 

methods have become the rice industry standard in Australia, rising from 34% of fields in 2014 to 24 

91% in 2020. While this saved 1.5-4.5 megalitres/ha per year, it has undermined the habitat value of 25 

these agricultural wetlands. ‘Bittern-friendly’ rice growing incentives could encourage timely nesting 26 

and maximise breeding success. Early and sufficient ponding can be complemented by establishing 27 

adjacent wetland habitat refuges, maintaining grassy banks, and creating dedicated patches to fast-28 

track nesting. Increasing water-use efficiency in agro-ecosystems is widely touted as being beneficial 29 

to the environment, but our research demonstrates the urgent need to manage trade-offs with 30 

biodiversity conservation. 31 

 32 

 33 

KEYWORDS: Water resource management, Agricultural intensification, Australasian bittern Botaurus 34 

poiciloptilus, Murray-Darling Basin, Wildlife-friendly farming, Bittern-friendly rice 35 

 36 
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1. Introduction 38 

Managing agricultural habitats to incorporate biodiversity conservation effectively is essential for 39 

sustainability, but complex trade-offs need to be addressed (Altieri, 1999; Macchi et al. 2020; 40 

Saunders et al. 2016; Segre et al. 2020; Teuscher et al., 2015; Kremen and Merenlender, 2018; Fastré 41 

et al. 2020). Adjusting or maintaining farming practices to meet biodiversity objectives can struggle 42 

to balance agronomic development, economic pressures and conflicting sustainability imperatives 43 

(McShane et al., 2011; Roos et al. 2019; Samnegård et al. 2019, Wright et al. 2012). Agricultural 44 

expansion and intensification affect 62% of the world’s threatened or near-threatened species 45 

(Maxwell et al., 2016), and collectively are considered the most important threats to birds, being 46 

implicated in the decline of 74% of the 1,469 species considered to be globally threatened (Birdlife 47 

International, 2018). In farming landscapes, agricultural intensification maximises production 48 

through increased fertiliser and pesticide use, mechanisation, loss of field-margin habitats, and 49 

resource-use efficiency. This has helped feed a growing human population, generated substantial 50 

economic benefits and improved some facets of sustainability, but in many cases it is jeopardizing 51 

the habitat values of agriculture (Birdlife International, 2018; Donald et al., 2006; Hayhow et al., 52 

2019; Huntsinger et al. 2017; Gonthier et al., 2014; Maxwell et al., 2016; Stanton et al., 2018; 53 

Tscharntke et al., 2012).  54 

Unlike other fields that dominate global agriculture, such as corn, wheat and soy, rice farming 55 

involves the creation of agricultural wetlands, and has traditionally supported substantial and 56 

important aquatic biodiversity (Czech and Parsons, 2002; Elphick et al. 2010; Hasegawa and Tabuchi, 57 

1995; Herring and Silcocks, 2014; Kasahara et al. 2020; Katoh et al. 2009). Given that around 160 58 

million hectares of rice are planted annually, and that rice is eaten by three billion people every day 59 

(FAO, 2020a), the contribution of rice wetlands is significant at a global scale. Natural wetlands are 60 

among the most impacted ecosystems on Earth, with global loss estimated at 64-71% since 1900, 61 

and a majority of the remainder being degraded (Davidson, 2014), so augmenting the role of 62 
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agricultural wetlands, like rice fields, in providing surrogate habitat is appealing (Elphick, 2000). 63 

However, rice farming across the world is under pressure to reduce water-use, with shorter season 64 

varieties, upgraded irrigation infrastructure, and new growing methods like alternate wetting and 65 

drying, drill-seeding, delayed permanent water and mid-season drainage (Darbyshire et al., 2019; 66 

Dunn and Gaydon, 2011; DPI 2015; 2018; FAO, 2016; Farooq et al., 2011; SRI, 2019; Yamano et al., 67 

2016). These alternatives to early permanent water and traditional, continuous flooding are lauded 68 

not just for their water-use efficiency but also for their roles in reducing methane emissions (LaHue 69 

et al., 2016; Miniotti et al., 2016; Peyron et al., 2016; Xu et al., 2016; Kunimitsu and Nishimori, 2020). 70 

Still, weed infestation under such water-saving schemes can incur large yield losses (Farooq et al., 71 

2011) and higher nitrous oxide emissions (Ahn et al., 2014; Yang et al., 2012), nitrogen losses and 72 

agrochemical contamination risks (Pittelkow et al., 2016). Little attention, however, has been paid to 73 

the trade-offs with biodiversity and habitat values, even though they could be considerable. For 74 

example, in Italy, dry-seeding reduced bat activity in organic rice (Toffoli and Rughetti 2020) and 75 

reduced amphibian densities, possibly causing declines in nearby heron and egret breeding colonies 76 

(Fasola and Cardarelli 2015), while in Japan, productivity gains from incorporating direct-seeding 77 

machinery, modern drainage systems and increased synthetic fertilizer and pesticides have come at 78 

the expense of wetland biodiversity (Fujioka and Lane, 1997; Katayama et al., 2015; Koji et al. 2014; 79 

Kidera et al., 2018). In California, reduced water availability and efforts to reduce greenhouse gas 80 

emissions by decreasing the amount of time fields are flooded, challenge the practice of winter-81 

flooding of harvested rice fields which provides critically important non-breeding habitat for millions 82 

of migratory waterfowl and shorebirds (Golet et al., 2018; Petrie et al., 2014; Sesser et al., 2016, 83 

2018; Strum et al., 2013).  84 

In Australia, water availability is the central issue affecting rice farming (Ashton et al., 2016). From 85 

2010-2020, the total rice field ranged from 4000-113,000 ha, driven by water allocations to 86 

permanent entitlements, together with the price of water on the temporary market (Ashton et al., 87 

2016; RMB, 2020). Low allocations and high water costs undermine the economic viability of rice 88 
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farming (Aither, 2020). The Australian rice industry is concentrated in the Riverina region of 89 

southern New South Wales, where recent severe droughts have increased adoption of water-use 90 

efficiency measures, with predictions that dry conditions will become more frequent and intense 91 

(Dunn and Gaydon, 2011; Humphries et al., 2006; MDBA, 2020). Concurrently, there is both 92 

increasing competition for alternative water uses, notably cotton and almonds (Aither, 2020; Booth 93 

Associates, 2014) and water reforms in the broader catchment – the Murray-Darling Basin – that aim 94 

to restore degraded ecosystems and conserve biodiversity through environmental water recovery 95 

from irrigated agriculture (MDBA, 2010). These reforms assume a dichotomy between agriculture 96 

and nature conservation, and compound reduced water availability for irrigation, reinforcing 97 

pressure on growers to maximise rice yield per megalitre of water used (Aither, 2020; Gross and 98 

Dumaresq, 2014; Mushtaq et al. 2013). However, to date, the measures used to increase water-use 99 

efficiency have largely ignored the biodiversity that exists in rice fields despite the habitat value, 100 

including for threatened species. 101 

The Riverina’s rice fields were recently found to support the stronghold for the globally endangered 102 

Australasian bittern (Botaurus poiciloptilus), a cryptic waterbird with 1000-2500 mature individuals 103 

remaining (Birdlife International 2021; Herring et al., 2019). Australasian bitterns rely on dense 104 

wetland vegetation for nesting and, before our present study, no detailed, field-based research on 105 

their breeding ecology had been undertaken (Kushlan and Hancock, 2005; O’Donnell, 2011). Bitterns 106 

from the Riverina region spend the non-breeding season at coastal wetlands, as well as more local 107 

sites, and usually arrive in rice fields in December, approximately two months after sowing, when 108 

there is both sufficient cover and abundant prey. First, males establish their territories then females 109 

start nesting (Herring et al., 2019). The aim of this study was to assess the impacts of water-use 110 

efficiency measures on bitterns breeding in rice fields, with a view to determining how rice growers 111 

could incorporate bittern conservation into their management by growing ‘bittern-friendly’ rice, a 112 

concept supported by the rice growers themselves (Bitterns in Rice Project, 2021). Given the trend 113 

towards a contraction of the ponding period – the number of days the fields are flooded – and the 114 
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limited opportunity for bitterns to breed successfully before harvest, we aimed to determine the 115 

water and habitat management guidelines most appropriate for bittern conservation in rice fields. 116 

Our key hypothesis was that a contraction of the ponding period would reduce opportunities for 117 

bitterns to fledge before the end of the rice season. 118 

 119 

2. Methods 120 

2.1 Study area: Riverina rice farming 121 

 122 

Rice farming in the Riverina region of southern New South Wales, Australia, commenced in the early 123 

1900s and expanded rapidly during the 1970s and 1980s, peaking in the 2000-2001 season at around 124 

1.75 million paddy tonnes on about 184, 000 ha before the decade-long ‘millennium drought’ 125 

(SunRice, 2002). Rice is grown in the Riverina from October to May with irrigation water primarily 126 

drawn from channels supplied by upstream dams in the Murray and Murrumbidgee River valleys. 127 

There are two main sowing and water management methods used for growing rice in the Riverina: 128 

1): ‘early permanent water’ with continuous flooding from the time of aerial (water-seeded) or dry 129 

broadcast sowing, usually in October or early November; and 2) direct drill-sowing, with similar 130 

sowing times but no permanent water until mid-late November through to December, and often 131 

with ‘delayed permanent water’ that involves periodic flooding pulses, then continuous ponding 132 

after germination. In both agronomic systems the depth of permanent water is initially around 5 cm 133 

and gradually increased to around 25 cm and maintained, then the water supply is terminated and 134 

draining occurs in preparation for harvest, which peaks in April (Ashton et al. 2016; DPI, 2015, 2018; 135 

Troldahl et al. 2020). A Riverina rice field usually includes 3-10 interconnected bays, each 136 

surrounded by banks, and managed collectively. 137 

 138 

2.2 Bittern breeding  139 
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 140 

Bitterns were located primarily during population surveys from 2013-2017 at 189 sites on 95 141 

randomly selected rice farms (Herring et al. 2019), complemented by opportunistic surveys at 25 142 

additional rice fields where related research was being undertaken. All of these sites were rice fields 143 

with early permanent water because a pilot study indicated these were favored by bitterns (Herring 144 

et al., 2019). Nest searches were undertaken at a subset of these sites (n=32) that were selected 145 

because of the presence of a territorial male, which makes a distinctive, readily detectable, 146 

‘booming’ call, and detection of at least two individuals. Although Gilbert et al. (2007) found that 147 

only around half of wetland sites with booming male Eurasian bitterns (Botaurus stellaris) supported 148 

nesting females, booming is a simple and widely used indicator of bittern breeding (Kushlan and 149 

Hancock, 2005) because the nests themselves are very difficult to locate and inevitably many went 150 

undetected. Searches primarily involved walking through fields – with landholder permission – in 151 

areas where nesting was suspected based on the location of booming males and observations of 152 

bitterns made by scanning fields with binoculars for birds, including those that could be females 153 

delivering food to nestlings or returning to incubate after feeding (see Gilbert et al. 2007). Searches 154 

ranged from 1-12 hours per site, covered 1-10 ha and were concentrated on the parts of bays 155 

furthest from the banks. Repeat visits were avoided in order to minimize disturbance at located 156 

nests, except when an additional visit was required to improve estimates of nesting commencement 157 

date. 158 

 159 

Information on Australasian bittern breeding phenology was augmented with data from its better-160 

studied closest relative, the Eurasian bittern. Thus we assumed that: a full clutch was four or five 161 

eggs with eggs laid every second day; the incubation period was 25 days for each egg, beginning at 162 

the time of laying, with asynchronous hatching; chicks had left the nest by 15 days and fledged at 55 163 

days (Puglisi and Bretagnolle 2005; Demongin et al. 2007; Kushlan and Hancock, 2005; O’Donnell 164 

2011; Polak 2016). This meant a clutch of five eggs required 88 days from the time of nesting 165 
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commencement until all chicks had fledged. For full clutches, the estimated date for nesting 166 

commencement – the first egg laid – was determined by hatching date of the oldest nestling (n=7), 167 

or assuming the mid-way point of incubation for eggs when found (n=4). For nests where there was 168 

evidence of breeding (i.e. old, unhatched egg, dead chick, substantial trampled vegetation around 169 

nest), and the chicks had presumably already begun roaming and were not locatable, 15 days since 170 

hatching was assumed (n=5), representing minimum ages, while one nest was found at the second 171 

egg stage.  172 

 173 

2.3 Water management 174 

 175 

In November 2018, all Riverina rice growers who grew rice during the 2017-18 season (n=625) were 176 

sent a link by SunRice to complete a 25-minute anonymous, online questionnaire, and encouraged 177 

to do so through rice industry networks, social media and the Bitterns in Rice Project. The survey 178 

included questions about the timing and duration of permanent water, irrespective of their water 179 

management and its potential suitability for bitterns. Ethics approval for this survey was obtained 180 

through the Charles Darwin University Human Ethics Committee (H17123). The survey was refined 181 

through two focus groups and tested with seven rice growers before implementation.  182 

 183 

From this survey, water management data were collected for 191 fields from 58 growers (response 184 

rate of 9%). Water management data were also collected for the 14 fields where 17 nests were 185 

found. The hydroperiod, referred to hereafter as ‘ponding period’ – where the field is flooded during 186 

the growing season – was calculated using date ranges supplied for permanent water 187 

commencement and for ‘lock-up’ or drainage. It does not include the drawdown period when some 188 

water is still present in the field, especially in pools along field edges. For the 14 fields where nests 189 

were found, ponding period was calculated using permanent water commencement dates and by 190 

deducting 21 days from supplied harvest commencement dates, unless known. By harvest time, rice 191 

https://www.sunrice.com.au/
https://www.bitternsinrice.com.au/


9 
 

fields and adjacent channels have usually dried out, with little or no aquatic prey like frogs and fish 192 

remaining for bitterns.  193 

 194 

To assess the relationships between ponding commencement, ponding period and days to nesting 195 

commencement, the Spearman correlation coefficient was used as it is superior when the 196 

relationship is not necessarily linear (Zar 2010). To test for significant differences in ponding 197 

commencement and ponding period between the breeding fields and the grower survey fields, we 198 

used a Satterthwaite’s approximate t test because it compensates for the possibility of unequal 199 

variances when using small sample sizes (Zar 2010). 200 

 201 

2.4 Breeding success model 202 

 203 

Australasian bittern chicks begin roaming from the nest within two weeks of hatching (Kushlan and 204 

Hancock, 2005), and could evade harvesting machinery prior to fledging, but the loss of wetland 205 

habitat once the rice season ends is likely to increase mortality from predation and starvation, 206 

especially in the absence of adjoining habitats, and hence overall fecundity. We developed a simple 207 

predictive model incorporating data on agronomic water management and bittern breeding 208 

phenology to detect successful breeding opportunities. By applying a laying-since-ponding 209 

commencement parameter with the 88-day period for nesting commencement to fledging of all five 210 

chicks, and a 21-day period to harvest, we assessed how many of the 191 fields from the grower 211 

survey could have supported successful breeding before harvest. We applied 95% CLM (confidence 212 

limits of the mean) for upper and lower ranges.  213 

 214 

  215 
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3. Results 216 

3.1 Bittern Breeding 217 

 218 

A total of 17 nests were located, including 13 from ten of the 189 primary study sites, and four from 219 

the opportunistic sites, resulting in 14 individual fields with confirmed breeding. These were widely 220 

distributed across the study area (Figure 1). The two fields with multiple nests included one with 221 

three concurrently active nests, but with only one booming male, suggestive of polygyny, while 222 

another site appeared to be re-nesting following failure, as only one male and one female was 223 

present. 224 

 225 

The mean date for estimated nesting commencement was 4 January (+-14 days; range: 15 226 

December-27 January), with 1 April (+-14 days; range: 12 March – 24 April) the mean for fledging of 227 

the youngest chick. The mean number of days until harvest for fledging of the youngest chick was 228 

6.6 (+- 14.8; range -19-31.), with all chicks able to fledge before harvest in 65% (11/17) of nests 229 

(Figure 2). There was a moderate negative relationship between nesting commencement and 230 

potentially successful breeding before harvest (R2 = 0.52, Figure 2).  231 

 232 

3.2 Water Management 233 

 234 

Of the 58 growers who completed the online questionnaire, 45% said they used early permanent 235 

water; 36% used direct-drill and delayed permanent water; and 14% used a combination, while 3% 236 

had early permanent water with mid-season drainage. Of their 191 fields, 43% commenced ponding 237 

in October, and 33% had a ponding period of at least 141 days. There was a strong negative 238 

relationship between ponding commencement and ponding period (Spearman Correlation 239 

Coefficient; Rs= -0.81, p<0.0001). Ponding commencement date was significantly earlier, by an 240 

average of 25 days, at the 14 breeding fields compared to the 191 fields from the grower survey 241 
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(Satterthwaites approximate t test; T = 10.3, df = 42.2, p <0.001; Figure 3). The breeding fields had a 242 

mean ponding period of 151 days, significantly higher than the 126 day mean for the grower survey 243 

fields (Satterthwaites approximate t test; T = -6.6, df = 18.4, p <0.001; Figure 3). 244 

 245 

Bitterns began nesting an average of 77 days after flooding and sowing (range: 53-106; 69-85, 95% 246 

CLM; Table 1). There was no significant relationship between ponding period and days to nesting 247 

commencement (Spearman Correlation Coefficient; Rs= 0.25, p<0.3969), or ponding commencement 248 

and days to nesting commencement (Spearman Correlation Coefficient; Rs= -0.39, p<0.1664) but the 249 

latter showed a tendency for later ponding to have fewer days until nesting commencement.  250 

 251 

3.3 Breeding success model 252 

 253 

For the 191 fields described in the grower survey, 20.4% (39/191; +-12% 95% CLM) were predicted 254 

to provide a successful breeding opportunity before harvest (Table 1), including 40% (34/83) of fields 255 

with ponding commencement in October and 4.6% (5/108) after October (Table 2). All 39 of the 256 

predicted successful breeding fields had a ponding period of 149 days or more, while none of the 257 

fields where breeding was predicted to be unsuccessful before harvest had a ponding period of 258 

more than 141 days (Figure 4; Table 2).  259 

260 



12 
 

4. Discussion 261 

4.1 Saving water at the expense of successful bittern breeding 262 

 263 

Alternatives to early, continuous flooding in order to save water and reduce greenhouse gas 264 

emissions are promoted around the world as increasing the sustainability of rice farming (FAO, 265 

2020b; Sustainable Rice Platform, 2020). However, improving sustainability in one facet of a system 266 

is often only achieved by trading off benefits gained from others, with biodiversity commonly being 267 

disadvantaged (Fastré et al. 2020; Huntsinger et al. 2017; Marcilio-Silva et al. 2018; McInerney and 268 

Helton, 2016; Sesser et al. 2016; Thomson et al. 2019). We show here that the benefits of traditional 269 

rice farming practices to a globally endangered waterbird are inadvertently being traded off to 270 

increase water-use efficiency and maximise profit. Australasian bitterns will be unlikely to breed 271 

successfully in rice fields under the new agronomic protocols, undermining the ecological value of 272 

these important agricultural wetlands.  273 

 274 

Potentially all nests could have been successful before harvest in rice fields with traditional, early 275 

permanent water that had a ponding period of at least 149 days, with 170 days between ponding 276 

commencement and harvest, but no nests in direct-drill and delayed permanent water fields with 277 

ponding less than 138 days ponding were likely to have succeeded. Unfortunately, the 77-day gap 278 

between ponding to nesting commencement recorded for aerial and broadcast sown early 279 

permanent water fields is unlikely to be markedly shorter in direct-drill and delayed permanent 280 

water fields because they attain heights that provide cover for bitterns later (B. Dunn, pers. comm.; 281 

L. Vial, pers. comm.), and the period between booming territory establishment and nesting in the 282 

Eurasian bittern is 1-2 months (Gilbert et al. 2007). Indeed, no bittern nests have ever been recorded 283 

in direct-drill and delayed permanent water fields. The early flooding appears to be more important 284 

for breeding success than prolonged ponding, given the moderate negative correlation between 285 

nesting commencement date and successful fledging before harvest. Early booming and nesting of 286 
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Eurasian bitterns in reedbeds is associated with increased breeding success, larger clutches and the 287 

capacity to re-nest or double brood, with the onset of booming linked to higher water levels and fish 288 

density (Mallord et al. 2000; Puglisi and Bretagnolle 2005; Gilbert et al. 2003; 2005; 2007).  289 

 290 

4.2 Water-use efficiency trends in the Australian rice industry 291 

 292 

If rice growing is to be bittern-friendly, then early ponding and extended water retention will be 293 

essential for successful breeding, but the industry trend is in the opposite direction. During our 294 

study, delayed permanent water and drill-sowing, which involve a contraction of the ponding period, 295 

became the rice industry standard in Australia’s Riverina, rising from 7% of fields in 2000, to 34% in 296 

2014, and 91% in 2020, though in 2021 it was 56% due to higher rainfall and favorable water 297 

allocations (Derbyshire et al. 2019; Ford, 2006; Herring et al. 2019; M. Groat, pers. comm). Water 298 

savings ranged from around 1.5-4.5 megalitres/ha per year, with approximately 11.9-14.9ML/ha 299 

needed for aerial sown rice with early permanent water compared to 10.4-12.9ML/ha in direct-drill 300 

sown rice with delayed permanent water, which offer substantial improvements in profit margin, 301 

especially in drought years (Dunn and Gaydon, 2011; Garnett et al., 2017; Dunn, 2018). The trend is 302 

reinforced by the increasing volatility of water markets and marginal water allocations, which delay 303 

sowing decisions and favour growing of short season varieties (Troldahl et al. 2020).  304 

 305 

4.3 The importance of bittern prey 306 

 307 

Important relationships are likely to exist between breeding success, water management and bittern 308 

prey. Results from a pilot study suggest the bitterns’ preference for nesting in fields with earlier 309 

ponding might be related to tadpole abundance, which was 12.3 times higher in December, as 310 

nesting commences, than those with the water-saving methods (Herring, M., unpublished data). Fish 311 

are also key prey for Botaurus bitterns (Kushlan and Hancock, 2005; Gilbert et al. 2007; Polak 2007, 312 
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2016) and can be more abundant as a result of early ponding: in Japan, the abundance of Cobitidae 313 

loaches, one species of which uses Riverina rice fields (Misgurnus anguillicaudatus; M. Herring, pers. 314 

obs.), was negatively correlated with ponding commencement date, probably because earlier 315 

inundation allowed more individuals to enter the rice fields and spawn (Katayama et al., 2011, 316 

2019). In the Eurasian bittern, starvation was the main cause of chick mortality, significantly higher 317 

than predation (Puglisi and Bretagnolle 2005; Gilbert et al. 2007), emphasizing the importance of 318 

prey abundance. In Riverina rice fields, the non-native, invasive common carp (Cyprinus carpio) was 319 

found to be the most abundant fish species, providing key prey for waterbirds (Taylor and Schultz, 320 

2008), although their value may decline with the new agronomy and if a proposed large-scale, 321 

government-funded biological control program goes ahead (McColl, 2016; Kopf et al. 2019). There is 322 

also growing recognition of the latent value of integrating modern irrigation systems and inland 323 

fisheries to achieve multiple objectives for sustainability (Lynch et al. 2019; McCartney et al. 2019) 324 

and incorporating native fish conservation and fish farming in Riverina rice fields, while 325 

simultaneously producing rice, is appealing on multiple fronts beyond provision of waterbird prey. 326 

For example, the supply of zooplankton from rice fields to an adjoining river was associated with 327 

increased juvenile abundance of an endangered Japanese fish, Itasenpara bitterling (Acheilognathus 328 

longipinnis; Nishio et al., 2017), while Californian rice fields are being used to rear juvenile Chinook 329 

Salmon (Oncorhynchus tshawytscha) as part of their upland-oceanic migration (Katz et al. 2017), and 330 

rice-fish farming systems can reduce synthetic inputs (Berg et al. 2017; Nayak et al. 2018) and 331 

improve food security (Ahmed and Garnett 2011). 332 

 333 

4.4 Managing trade-offs to reduce biodiversity loss 334 

 335 

Novel habitats can sometimes have higher conservation values than their natural counterparts 336 

(Maclagan et al. 2018; Sousa et al. 2019), but problems may arise when the habitat on which a 337 

species has come to depend becomes less economically desirable and land-use changes (Luck et al. 338 
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2013, 2014; Singer and Parmesan, 2018; Stock et al. 2013). The biodiversity value of at least some 339 

rice fields could be maintained by using incentives that enable farmers to persist with early, 340 

continuous inundation, as well as triggering others to resume the traditional method. The bittern 341 

breeding habitat provisioning services of Riverina rice fields could be optimised for these fields, with 342 

the remainder continuing to focus on water-use efficiency and maximising yield per megalitre. As 343 

noted by Jessop et al. (2015), in optimizing restored wetlands for nutrient storage and removal, it is 344 

unrealistic to expect all ecosystem services to be maximised at every site. Incentives to alter 345 

agronomic practise have been used successfully elsewhere in the world, particularly in Europe and 346 

North America. For example, adjusting harvest and mowing regimes can increase the breeding 347 

success of bird species of conservation concern (e.g. Arbeiter et al., 2018; Bretagnolle et al., 2011; 348 

Holyoak et al. 2014; Santangeli et al., 2014; Weintraub et al. 2016). In Australia, such work could 349 

have benefits beyond bitterns, with a recent study showing this bird has the highest potential as a 350 

cost-effective, threat-based umbrella species among all current focal threatened taxa in Australia 351 

(Ward et al. 2020). Indeed, increasing the hydroperiod, while still maintaining a seasonal flooding-352 

drying regime, has been identified as a key conservation action for successful reproduction in the 353 

threatened southern bell frog (Litoria raniformis), which uses Riverina rice fields and is key bittern 354 

prey (Hamer et al. 2016; Menkhorst, 2012; Wassens et al. 2010).  355 

 356 

4.5 Adjacent refuges, grassy banks and nesting patches 357 

 358 

In addition to an early and sufficient ponding period, we have identified three management 359 

priorities for bittern conservation on rice farms. Firstly, bittern-friendly rice growing could 360 

incorporate dedicated refuges adjacent to rice fields, perhaps augmenting existing supply and 361 

drainage channels, and storage dams. In this way, irrigation infrastructure could complement rice 362 

field habitat during the growing season and enable use of rice farms after harvest, offering young 363 

birds additional time before dispersal, as well as earlier in the season prior to fields reaching 364 
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adequate heights that provide cover for bitterns. Water retention structures (excavated ditches) 365 

surrounding rice fields have been incentivised in Italy and Japan to reduce the negative effects of 366 

drying periods on aquatic organisms, offering a refuge from where recolonization of the rice field 367 

can occur, with larger, deeper structures being most successful (Giuliano and Bogliani, 2019; Miyu et 368 

al. 2020). Secondly, maintaining vegetated banks will provide cover from predators, along with 369 

assisting in integrated pest management (e.g. see Horgan et al. 2017), and supporting other cover-370 

dependent wetland bird species. Many rice field banks are sprayed with herbicide to reduce weed 371 

prevalence but, in Italy, not only was rice field use by Eurasian bitterns higher in areas with 372 

vegetated banks (Longoni et al. 2011) but so too was butterfly and orthopteran diversity and 373 

abundance (Giuliano et al., 2018). Thirdly, to incentivise earlier bittern nesting within the field, rice 374 

growers could be compensated to create small nesting patches (e.g. 10-25 m2), where taller and 375 

thicker rice growth is encouraged, or other vegetation such as reeds is propagated in slightly deeper 376 

areas which would then retain both water and cover after field drainage and harvesting.  377 

 378 

4.6 Targeted restoration and wetland management  379 

 380 

Another way to reduce the impact of increased water-use efficiency on bitterns is through 381 

restoration or augmentation of wetland habitats beyond rice farms. Fortunately, concerted bittern 382 

conservation efforts are underway, such as the targeted delivery of environmental water at key sites 383 

(DPIE, 2020), the design and modification of wetlands to encourage bittern breeding (Paloczi, 2020), 384 

and strategic burning to maintain early successional stages in reed-beds (GHCMA, 2019). Natural 385 

wetlands can support higher bittern breeding densities than occur in rice fields (Belcher et al. 2017), 386 

and bitterns appear to have no preference for breeding in rice, so despite the possibility of lower 387 

breeding success, it is unlikely rice fields will operate as ecological traps (see Battin, 2004). However, 388 

there is potential, as a result of increasing water-use efficiency, for a population sink to develop, 389 

with reproductive output falling below replacement levels. The risk of this would be reduced 390 
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through bittern-friendly rice growing and restoration of natural wetlands, the relative costs and 391 

multiple benefits of which need to be considered (e.g. see Gardali et al. 2021.). 392 

 393 

5. Conclusion 394 

While improved water-use efficiency in farming is widely touted as being beneficial to the 395 

environment and is a common feature of sustainable intensification, the effects on biodiversity have 396 

been neglected. We show here that the value of rice fields to the endangered Australasian bittern is 397 

being undermined by efforts to save water and it is likely other species are also impacted. We 398 

recommend development of bittern-friendly incentives for rice growers to maximise bittern 399 

breeding success while still producing an economically viable crop. Incentives should be targeted at 400 

providing a ponding period from October or early November and sustained for at least 149 days. This 401 

could be supplemented by: 1) providing or augmenting adjacent habitat refuges such as vegetated 402 

channels and storage dams, 2) maintaining grassy banks, and 3) trialling nesting patches. Future 403 

research should help understand the potential role of incentives, novel water policy and the 404 

feasibility of bittern-friendly rice products, where the consumer pays a premium to cover additional 405 

costs to growers. The capacity for farmland to complement biodiversity conservation in protected 406 

areas is greatly reduced with a simplistic, binary framing that water resources are either used to 407 

produce food and fibre, or used for the environment. The use of rice fields by bitterns provides an 408 

opportunity to develop and test integrated water management scenarios, managing trade-offs and 409 

maximising the multifunctional benefits per megalitre used. 410 
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 901 
 902 
Figure 1: Location of 14 rice fields where 17 Australasian bittern nests were located from 903 
2013-2018 across the Murrumbidgee Irrigation Area (MIA) and Coleambally Irrigation Area 904 
(CIA) in the Riverina region, New South Wales. 905 
 906 
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 907 
 908 
Figure 2: Estimated nesting commencement (blue points) and final chick fledging date (red 909 
points), with number of days until rice harvest when the final chick fledged, for 17 910 
Australasian bittern nests from 2013-2018 in the Riverina region, New South Wales, with 911 
separate coefficients of determination. 912 
 913 
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 914 
 915 
Figure 3: Ponding period and commencement date for 205 rice fields in the Riverina region, New 916 
South Wales, including 191 from a grower survey, and 14 where 17 Australasian bittern nests were 917 
found (black diamonds). Grey circles represent number of fields (small = 1-4, medium = 5-10, large 918 
= 11-18).  919 
 920 

 921 
 922 



41 
 

 923 
Figure 4:  Ponding commencement and period for 191 rice fields in the Riverina region, New South 924 
Wales, with predictions for successful Australasian bittern breeding opportunities before harvest 925 
indicated in red.  926 
 927 
Table 1: Proportion of 191 rice fields in the Riverina region, New South Wales, predicted to have 928 
potential successful bittern breeding before harvest for three different ponding to nesting 929 
commencement periods: mean, upper and lower 95% CLM. 930 
 931 
 932 

 69 Ponding Days  
to Laying 

(Lower 95% CLM) 

77 Ponding Days  
to Laying 
(Mean) 

85 Ponding Days  
to Laying 

(Upper 95% CLM) 

Successful 37% (70) 20% (39) 8% (16) 

Unsuccessful 63% (121) 80% (152) 92% (175) 
 933 
 934 
 935 
 936 
Table 2: Ponding commencement and period for 191 rice fields in the Riverina region, New South 937 
Wales, with predictions for successful Australasian Bittern breeding opportunities before harvest 938 
(shaded in grey). Numbers are successful fields, with totals in parentheses. 939 
 940 
 941 

Ponding 
commencement 

date 

Ponding period (days) 

≥162 161 159 151 149 141 <138 
Successful 

(%) 

16-Oct  7 (7)  2 (2)  0 (12) 0 (9) 30 

26-Oct 7 (7)   18 (18)  0 (12) 0 (16) 47 

8-Nov   2 (2)  3 (3)  0 (21) 19 

≥ 23-Nov       0 (82) 0 

Successful (%) 100 100 100 100 100 0 0  

 942 


