

National Environmental Science Programme

Appendix 2 Threat Abatement Strategy Results

This document is an appendix from: April E. Reside, Michelle Ward, C.J. Yong, James E.M. Watson, Andrew Rogers, Ruben Venegas Li and Josie Carwardine. (2021) A knowledge synthesis to inform a national approach to fighting extinction - Final Report. NESP Threatened Species Recovery Hub Project 7.7 report, Brisbane.

November 2021

THE UNIVERSITY OF QUEENSLAND

Habitat retention & restoration

"Habitat retention and restoration" was the most frequently assigned Threat Abatement Strategy, and was assigned to address a range of threats. In a small proportion of cases, it was assigned to address multiple threats to an individual species (Figure 1).

Two species had 7 threats for which HRR was required: Freshwater Sawfish (*Pristis pristis*), and Eastern Hooded Plover (*Thinornis rubricollis rubricollis*).

N threats requiring Habitat retention & restoration

Appendix 2 Fig. 1. Histogram of the number of threats, per species, that were assigned 'habitat retention and restoration' as the Threat Abatement Strategy.

	VU	EN	CR	EX (rediscovered)	Total	% total
						in group
Bird	32	22	10		64	67.37
Fish	13	13	4		30	73.17
Frog	11	5	8		24	64.86
Invertebrate	5	14	15		34	62.96
Mammal	32	17	2		51	53.68
Plant	386	360	111	2	859	66.85
Reptile	17	13	3		33	63.46
Total	496	444	153	2	1095	

Appendix 2 Table 1. The number of species per taxonomic group and threat status that required 'habitat retention and restoration' as the Threat Abatement Strategy.

Habitat retention and restoration was most often assigned where the direct link to habitat loss, fragmentation and degradation could be made (n=824, Table 2). The next most frequently associated threats requiring this Threat Abatement Strategy were other natural system modifications, namely erosion and salinity. Often it was further required for alteration to surface water flows and infiltration.

Appendix 2 Table 2. The different threats that were addressed through the action 'habitat retention and restoration', and the frequency in which 'habitat retention and restoration' was assigned to each threat.

Threat	Ν	Justification
agriculture (cropping)	3	Habitat loss and degradation resulted from this land use
Agriculture and aquaculture (plantations/ forestry)	4	Habitat loss and degradation resulted from this land use
Alteration to surface water	57	Restoring native vegetation is recommended for restoring
flows and infiltration		hydrology regimes in many contexts
Alteration to surface water	4	Restoring native vegetation is recommended for restoring
flows and infiltration:run-off		hydrology regimes in many contexts
climate change & severe	6	In many cases, improving habitat quality and extent through
weather		restoration is the best available option for helping species
	0	persist in the face of climate change
climate change & severe	8	In many cases, improving habitat quality and extent through
nottorns		restoration is the best available option for helping species
climate change & covere	6	Habitat roctoration can stabilize babitat areas in the face of
weather: storms & flooding	0	storms and floods e.g. through mangroves and also create
		new habitat above the higher sea level
climate change & severe	2	Habitat restoration can stabilise habitat areas in the face of
weather: storms & flooding	_	stronger cyclones and floods, e.g. through mangroves, and
(stronger cyclones/storms)		also create new habitat above the higher sea level.
climate change (sea-level	8	Habitat restoration can stabilise habitat areas in the face of
rise)		sea-level rise, e.g. through mangroves, and also create new
		habitat above the higher sea level.
Disease	1	Disease was listed as a threat to the Koala, but there was no
		advice other than "Research mechanisms to reduce the
		impacts of disease". In this case we decided the best course
		of action was to improve their habitat quality and extent, as
		habitat loss and degradation could increase stress and
<u> </u>		susceptibility to disease.
Disease in aquatic system	4	Controlling other threats, particularly habitat degradation, is
		recommended for some species impacted by disease,
		quality can improve species chances in the face of disease
		threat
Disease in terrestrial system	2	Controlling other threats, particularly habitat degradation, is
	_	recommended for some species impacted by disease
Effluent and wastewater	2	Habitat restoration was recommended for preventing, and
		in some cases addressing, the threat of Effluent and
		wastewater
Energy production and	26	Habitat loss and degradation resulted from this land use
mining		
Habitat loss, fragmentation	824	Habitat restoration is required to address habitat loss,
and degradation		fragmentation and degradation.
Habitat shifting and	2	In many cases, improving habitat quality and extent through
alteration		restoration is the best available option for helping species
		persist in the face of climate change

Human intrusion	1	This threat relates to recreational boat moorings impact on spawning habitat damaging habitat for the red handfish; therefore, habitat restoration was recommended to address it.
Inappropriate disturbance regimes	6	Habitat restoration actions should include restoring ecological functions of the landscape and ameliorate impacts of inappropriate disturbance regimes
Increased frequency/severity of droughts	1	In many cases, improving habitat quality and extent through restoration is the best available option for helping species persist through drought
Invasive invertebrate (bee/ wasp)	1	Little advice was provided on the nature of the threat of bees on Hooded Plover; so improving habitat quality and extent was considered the best option for increasing their persistence.
Invasive vertebrate (cane toad)	8	In many cases, little on-ground action can be done to ameliorate the threat of cane toads to threatened species, except where the threatened species can be sheltered in toad-free refuges such as islands. On mainland Australia, decommissioning waterholes across dry areas is likely to be the best option. Otherwise, controlling all other threats is recommended.
Invasive vertebrate (rodents)	38	Little advice for controlling rodents on mainland (focus is on islands); in some cases, advice is to restore ground layer where rats are a threat (e.g., Mitchell's Rainforest Snail)
invasive vertebrate (sugar glider)	1	At present the impacts of Sugar Gliders on Orange-bellied Parrots are limited; advice is to control other threats.
Nutrient loads	4	Habitat restoration was recommended for preventing, and in some cases addressing, the threat of increased nutrient loads.
Other natural system modifications	313	Habitat restoration actions should include restoring ecological functions of the landscape and ameliorate impacts of other natural system modifications
Other natural system modifications: erosion	14	Habitat restoration was recommended for preventing, and in some cases addressing, the threat of unsustainable erosion.
Other natural system modifications: inappropriate habitat management	2	Habitat restoration actions should include restoring ecological functions of the landscape through appropriate habitat management
Other natural system modifications: salinity	15	Habitat restoration was recommended for preventing, and in some cases addressing, the threat of salinity
Pollution	3	In cases where pollution entering swamps is a threat to rare orchids, habitat restoration was considered the best option to address this.
Problematic native species (fish)	1	Controlling other threats, particularly habitat degradation, is recommended for some species impacted by native fish.
Problematic native species (goanna)	1	Goannas are considered a low threat to malleefowl, and without many feasible actions available to directly address this threat, controlling other threats such as habitat degradation was considered the best option.
Problematic native species (plant)	6	Habitat restoration actions can include management of problematic native plant species.

problematic native species/diseases	2	Controlling other threats, particularly habitat degradation, is recommended for some species impacted by disease.
		particularly for aquatic pathogens, where improving water quality can improve species chances in the face of disease threat.
Small/restricted population	17	Increasing habitat quality, extent and connectivity can be done through restoration, and can be one option to increase the population size for some species.
Temperature extremes	2	For some fish species, increasing riparian cover through restoration can shade streams to mitigate the threat of temperature extremes.
Transportation and service corridors	4	Habitat loss and degradation resulted from this land use
Urban and commercial development and maintenance	2	Habitat loss and degradation resulted from this land use

Datasets used for spatial Threat Abatement Strategies

Appendix 2 Table 3. Datasets used to create the spatial cost models that formed the basis of the Threat Abatement Strategies.

Dataset	Use	Reference	Spatial cost model
NVIS 1750	Vegetation types	https://www.environment.go	Habitat restoration
Version 6.0		v.au/land/native-	
		vegetation/national-	Fire management
		vegetation-information-	
		system/data-products	Weed management
			Hydrology
			management
Catchment	Used to locate:	https://www.agriculture.gov	Habitat restoration
Scale Land Use	- agricultural intensity.	au/abares/aclump/land-	
of Australia		use/data-download	Grazing
	- grazing land (Grazing native vegetation,		management
	Grazing modified pastures)		
			Forestry
	 forestry land (Production native 		management
	forests, Wood production forestry,		
	Environmental forest plantation, Other		
	forest plantation, Softwood plantation		
	forestry, Hardwood plantation forestry,		
	Plantation forests)		
Forest and	Used to locate cleared land.	Ward et al. (2019)	Habitat restoration
Woodland Loss			
Topographic	Used to identify resistance within the	Gallagher RV. 2020. National	All spatial layers
Ruggedness	landscape.	prioritisation of Australian	
Index	Reclassified so 0-31 = 1 (minimal	plants affected by the 2019-	
	ruggedness), 31-110 = 2 (medium	2020 bushfire season – Report	
	ruggedness), 110 - 698 = 3 (very rugged)	to the Commonwealth	
		Department of Agriculture,	
Travel time to	Llood directly to estimate travel time	Water and Environment.	All cratic lowers
cities	Osed directly to estimate travel time	weiss et al. (2018)	All spatial layers
ARIA	Used to differentiate between rural	https://www.abs.gov.au/web	Fire management
,, .	remote, and urban environments.	sitedbs/d3310114.nsf/home/r	Predator
		emoteness+structure	management
			Herbivore
			management
NVIS Current	Used to extract vegetated areas and	https://www.environment.go	Weed management
Version 6.0	differentiate between open or closed	v.au/land/native-	
	canopies.	vegetation/national-	Herbivore
		vegetation-information-	management
		system/data-products	
Fox distribution		Pintor et al. (2020)	Predator
Cat distribution		Pintor et al. (2020)	Predator
			management
Dingo		Pintor et al. (2020)	Predator
distribution			management

Dasyurus	Used directly to identify Dasyurus	Commonwealth of Australia	Predator
maculatus	maculatus distribution, and ensure	(2019). Species of National	management
distribution	ground baiting was conducted within	Environmental Significance	
	these areas.	Distributions.	
Threatened		Commonwealth of Australia	All spatial layers
species		(2019). Species of National	
distribution		Environmental Significance	
		Distributions.	
Invasive		Pintor et al. (2020)	Invasive herbivore
ungulate			management
distribution			
Rabbit		Pintor et al. (2020)	Rabbit
distribution			management
Phytophthora		Pintor et al. (2020)	Phytophthora
threat map			management
Surface	Used directly to identify river and	https://www.ga.gov.au/scient	Hydrology
Hydrology	stream network, as well as dams and	ific-topics/national-location-	management
Polygon	weirs.	information/national-surface-	
(National)		water-information	Invasive fish
			management

Threat Abatement Strategy Results details

Appendix 2 Fig. 2. The Threat Abatement Strategies for each of the taxonomic groups, shown as a percentage of the number of species in that group.

Appendix 2 Fig. 3. The cost of each Threat Abatement Strategy per species and per km 2. Both the Left and Right plots are in the same order

		Average annual	Max	Min cost/	Average cost for taxonomic
Taxonomic group	Subgroup	cost/ spp	cost/ spp	spp	group
	Algae, Mosses and Lichens	213.34	213.34	213.34	
	Aquatic Plants	837.26	837.26	837.26	
	Epiphytes and Climbers	803.59	2052.90	231.74	
	Ferns and Cycads	293.38	436.34	58.00	
Plants	Fungi	4146.33	5337.63	412.42	1160.30
	Herbs and Forbs	1085.91	4000.00	269.00	
	Mallees	989.25	3000.00	324.92	
	Orchids	1122.44	12611.50	209.89	
	Shrubs	1037.83	5500.00	141.49	
	Trees	1073.67	6500.00	234.33	
Frogs	Frogs	6582.48	16200.00	1546.25	6582.48
Birds	Birds	15294.00	48020.24	420.24	15294.00
Invertebrates	Invertebrates	2909.44	12000.00	402.76	2909.44
Mammals	Marsupials	20053.07	31378.44	8797.91	12002 00
IVIdITITIdis	Rodents	7912.90	21750.00	1540.88	13902.90
Reptiles	Reptiles	10779.23	23133.33	3027.03	10779.23
Threatened Ecological	Threatened Ecological				
Communities	Communities	3546	4200	1000	3546

Appendix 2 Table 4. Costs of monitoring threatened species, data from OEH (2013). The values equate to the total annual cost for monitoring a species in New South Wales.

Extrapolating the cost of monitoring of a species in New South Wales, by taking the average cost for monitoring species in each taxonomic group, we can get a ballpark estimate of how much monitoring might cost for all our threatened species. Important caveats to note are that monitoring in very remote parts of Australia are likely to be more expensive than those in New South Wales, particularly across northern Australia where species new to science are still being discovered with comparative regularity; and that there are no estimates here of monitoring threatened fish species. Future work should estimate the costs of monitoring based on different parts of Australia, and extrapolate the costs in a more nuanced way, e.g. compare the cost of monitoring trees to the number of threatened trees, rather than the monitoring cost averaged across all species within that taxonomic group. Furthermore, monitoring is likely to have some cost sharing, for example, monitoring all threatened species – at least in each taxonomic group – per visit to a site. For example, a bird survey at a site could monitor all the threatened bird species at the site.

Appendix 2 Table 5. Estimated costs of monitoring threatened species in our analysis, based on extrapolations of average annual cost of monitoring species from (OEH 2013) in New South Wales.

Taxonomic group	# spp in our	Average cost/	Extrapolated
	analysis	spp (OEH 2013)	monitoring cost
Plants	1285	1160.3	1,490,985.50
Birds	95	15294	1,452,930.00
Frogs	37	6582.48	243,551.76
Invertebrates	54	2909.44	157,109.76
Mammals	95	13982.98	1,328,383.10
Reptiles	52	10779.23	560,519.87
Total	1618		5,233,479.99

Annendix 2 Table 6	Costs of cantive	hreeding programs	s for Δustrali	an animals
Appendix 2 Table 0.	CUSIS OF Captive	e breeding programs	s ioi Australi	an annnais

Species	Thr	total	Ν	total	Source
	eat	expendi	yea	cost(AU	
	stat	ture	rs	D)/ year	
	us				
Lancelin	Vu	31000	3	10333.3	https://www.dpaw.wa.gov.au/images/documents/about/
Island				3	science/cswa/articles/100.pdf
sking					
Giant	Vu	70000	5	14000	https://www.zoo.org.au/fighting-extinction/local-
Burrowi					threatened-species/
ng Frog					
Large	En	80000	5	16000	https://www.zoo.org.au/fighting-extinction/local-
Brown					threatened-species/
Tree					
Frog					
New	Vu	80000	5	16000	https://www.zoo.org.au/fighting-extinction/local-
Holland					threatened-species/
Mouse					
Smoky	En	80000	5	16000	https://www.zoo.org.au/fighting-extinction/local-
Mouse					threatened-species/
Mallee	En	100000	5	20000	https://www.zoo.org.au/fighting-extinction/local-
Emu-					threatened-species/
wren					
Boodie	Vu	71400	3	23800	https://www.dpaw.wa.gov.au/images/documents/about/
					science/cswa/articles/100.pdf
Malleef	Vu	74608	3	24869.3	https://www.dpaw.wa.gov.au/images/documents/about/
owl				3333	science/cswa/articles/100.pdf
Gilbet's	Cr	150000	6	25000	https://www.dpaw.wa.gov.au/images/documents/about/
potoroo					science/cswa/articles/100.pdf
Key's	En	130000	5	26000	https://www.zoo.org.au/fighting-extinction/local-
Matchst					threatened-species/
ick					
Grassho					
pper					
Bilby	Vu	220200	8	27525	https://www.dpaw.wa.gov.au/images/documents/about/
Create	Cir	1 40000	-	20000	science/cswa/articles/100.pdf
Grassia	Cr	140000	5	28000	https://www.zoo.org.au/fighting-extinction/local-
na					threateneu-species/
Earless					
Dragon	6	450000	_	20000	https://www.eec.eg.eu/fighting.outingtion/local
Brusn-	Cr	150000	5	30000	https://www.zoo.org.au/lighting-extinction/local-
tailed					נוו במנכוובת-species/
KOCK-					
wallaby		450000	-	20000	
Lord	Cr	150000	5	30000	nttps://www.zoo.org.au/fighting-extinction/local-
Howe					un eateneu-species/
Island					
Stick					
Insects					

Shark Bay mouse	Vu	155000	5	31000	https://www.dpaw.wa.gov.au/images/documents/about/ science/cswa/articles/100.pdf
Wester n swamp tortoise	En	327900	10	32790	https://www.dpaw.wa.gov.au/images/documents/about/ science/cswa/articles/100.pdf
Wester n barred bandico ot	En	406721	12	33893.4 1667	https://www.dpaw.wa.gov.au/images/documents/about/ science/cswa/articles/100.pdf
Wester n quoll	Vu	335900	9	37322.2 2222	https://www.dpaw.wa.gov.au/images/documents/about/ science/cswa/articles/100.pdf
Mala	En	257921	6	42986.8 3333	https://www.dpaw.wa.gov.au/images/documents/about/ science/cswa/articles/100.pdf
Banded hare- wallaby	Vu	257921	\$6	42986.8 3333	https://www.dpaw.wa.gov.au/images/documents/about/ science/cswa/articles/100.pdf
Dibbler	En	275000	5	55000	https://www.dpaw.wa.gov.au/images/documents/about/ science/cswa/articles/100.pdf
Spotted Tree Frog	En	286000	5	57200	https://www.zoo.org.au/fighting-extinction/local- threatened-species/
Numbat	En	480000	8	60000	https://www.dpaw.wa.gov.au/images/documents/about/ science/cswa/articles/100.pdf
Norther n Corrobo ree Frogs	En	364000	5	72800	https://www.zoo.org.au/fighting-extinction/local- threatened-species/
Baw Baw Frog	Cr	85000	1	85000	https://www.zoo.org.au/fighting-extinction/local- threatened-species/
Golden- rayed Blue butterfl y	Cr	500000	5	100000	https://www.zoo.org.au/fighting-extinction/local- threatened-species/
Alpine She-oak Skink.	En	545000	5	109000	https://www.zoo.org.au/fighting-extinction/local- threatened-species/
Souther n Corrobo ree Frogs	En	621000	5	124200	https://www.zoo.org.au/fighting-extinction/local- threatened-species/
Reagent honeye ater	En	770000	5	154000	https://www.zoo.org.au/fighting-extinction/local- threatened-species/

Leadbea ter's Possum	Cr	850000	5	170000	https://www.zoo.org.au/fighting-extinction/local- threatened-species/
Orange- bellied parrot	Cr	855000	5	\$171,00 0	https://www.zoo.org.au/fighting-extinction/local- threatened-species/
Swift parrot	Cr	880000	5	176000	https://www.zoo.org.au/fighting-extinction/local- threatened-species/
Helmet ed Honeye ater	Cr	140000 0	5	280000	https://www.zoo.org.au/fighting-extinction/local- threatened-species/
Plains wander er	Cr	144000 0	5	288000	https://www.zoo.org.au/fighting-extinction/local- threatened-species/
Eastern Barred Bandico ots	Ex	253500 0	5	507000	https://www.zoo.org.au/fighting-extinction/local- threatened-species/
Tasmani an Devil	En	263000 0	5	526000	https://www.zoo.org.au/fighting-extinction/local- threatened-species/
Victoria n Gutheg a Skink	En	493600 0	5	987200	https://www.zoo.org.au/fighting-extinction/local- threatened-species/

Threat Abatement Strategy: cost per species

Threat Abatement Strategies differed markedly in the extent in which they were needed, the number of species that required them, the total cost of implementation, and the corresponding cost per species. Here we examine the cost per species for each of the Threat Abatement Strategies.

Appendix 2 Fig. 4. Disease management. Right: Threat Abatement Strategy, middle: the number of species requiring this Threat Abatement Strategy, left: the cost per species requiring this Strategy.

Appendix 2 Fig. 5. Fire management. Right: Threat Abatement Strategy, middle: the number of species requiring this Threat Abatement Strategy, left: the cost per species requiring this Strategy.

Appendix 2 Fig. 6. Grazing management. Right: Threat Abatement Strategy, middle: the number of species requiring this Threat Abatement Strategy, left: the cost per species requiring this Strategy.

Appendix 2 Fig. 7. Habitat restoration. Right: Threat Abatement Strategy, middle: the number of species requiring this Threat Abatement Strategy, left: the cost per species requiring this Strategy. Far more species require habitat restoration than there is land that was deemed restorable (i.e. cleared and not under an intensive land use)

Appendix 2 Fig. 8. Invasive fish management. Right: Threat Abatement Strategy, middle: the number of species requiring this Threat Abatement Strategy, left: the cost per species requiring this Strategy.

Appendix 2 Fig. 9. Invasive grazer (large herbivore) management. Right: Threat Abatement Strategy, middle: the number of species requiring this Threat Abatement Strategy, left: the cost per species requiring this Strategy.

Appendix 2 Fig. 10. Invasive predator management. Right: Threat Abatement Strategy, middle: the number of species requiring this Threat Abatement Strategy, left: the cost per species requiring this Strategy.

Appendix 2 Fig. 11. Invasive and problematic bird management. Right: Threat Abatement Strategy, middle: the number of species requiring this Threat Abatement Strategy, left: the cost per species requiring this Strategy.

Appendix 2 Fig. 12. Map and protect refugia. Right: Threat Abatement Strategy, middle: the number of species requiring this Threat Abatement Strategy, left: the cost per species requiring this Strategy.

Appendix 2 Fig. 13. Rabbit management. Right: Threat Abatement Strategy, middle: the number of species requiring this Threat Abatement Strategy, left: the cost per species requiring this Strategy.

Appendix 2 Fig. 14. Problematic native herbivore management. Right: Threat Abatement Strategy, middle: the number of species requiring this Threat Abatement Strategy, left: the cost per species requiring this Strategy.

Appendix 2 Fig. 15. Restrict access to critical sites. Right: Threat Abatement Strategy, middle: the number of species requiring this Threat Abatement Strategy, left: the cost per species requiring this Strategy.

Appendix 2 Fig. 16. Weed management. Right: Threat Abatement Strategy, middle: the number of species requiring this Threat Abatement Strategy, left: the cost per species requiring this Strategy.

Appendix 2 Fig. 17. Aquatic connectivity. Right: Threat Abatement Strategy, middle: the number of species requiring this Threat Abatement Strategy, left: the cost per species requiring this Strategy.

References

OEH. 2013. Saving our Species Technical Report. Sydney: NSW Office of Environment and Heritage.

- Pintor, A., M. Kennard, J. G. Alvarez-Romero, and S. Hernandez. 2020. User Guide for data created as part of NESP 3.3 "Prioritising threatened species and threatening processes across Northern Australia." National Environmental Science Program, Northern Australia Environmental Resources Hub.
- Ward, M. S., J. S. Simmonds, A. E. Reside, J. E. M. Watson, J. R. Rhodes, H. P. Possingham, J. Trezise,
 R. Fletcher, L. File, and M. Taylor. 2019. Lots of loss with little scrutiny: The attrition of
 habitat critical for threatened species in Australia. Conservation Science and Practice **0**:e117.
- Weiss, D. J., A. Nelson, H. S. Gibson, W. Temperley, S. Peedell, A. Lieber, M. Hancher, E. Poyart, S. Belchior, N. Fullman, B. Mappin, U. Dalrymple, J. Rozier, T. C. D. Lucas, R. E. Howes, L. S. Tusting, S. Y. Kang, E. Cameron, D. Bisanzio, K. E. Battle, S. Bhatt, and P. W. Gething. 2018. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553:333-336.

Further information: http://www.nespthreatenedspecies.edu.au

This project is supported through funding from the Australian Government's National Environmental Science Program.

