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Abstract: Trophic interactions and disturbance events can shape the structure and function 24 

of ecosystems. However, the effects of drivers such as predation, fire and climatic variables 25 

on species distributions are rarely considered concurrently. We used a replicated landscape-26 

scale predator management experiment to compare the effects of red fox Vulpes vulpes 27 

control, time-since-fire, vegetation type and other environmental variables on native 28 

herbivore distributions. Occurrence data for four native herbivores, and an invasive 29 

predator—the red fox—were collected from 240 sites across three baited (for lethal fox 30 

control) and three unbaited forest blocks (4659 – 9750 ha) in south-western Victoria, 31 
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Australia, and used to build species distribution models. The herbivore taxa were: red-32 

necked wallaby Macropus rufogriseus, black wallaby Wallabia bicolour, grey kangaroo 33 

Macropus fuligenosus and Macropus giganteus. and common brushtail possum Trichosurus 34 

vulpecula. Fox control and fire had little effect on herbivore occurrence, despite the 35 

literature suggesting it can influence abundance, while climate, proximity to farmland and 36 

topography were more influential. This may be because the region’s high productivity and 37 

agricultural pastures subsidise food resources for both predators and prey within the forest 38 

blocks, and so dampen trophic interactions. Alternatively, these drivers may affect 39 

herbivore abundance, but not herbivore occurrence. Understanding the drivers of herbivore 40 

distributions is an important step in predicting the effects of herbivory on other species, 41 

particularly after management interventions such as predator control and prescribed burns. 42 
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Introduction 46 

Understanding the processes that drive the distributions of herbivores is fundamental to 47 

managing ecosystems (Franklin 2010). Herbivores consume and trample organic matter, and 48 

so shape ecosystems globally by simplifying vegetation structure, changing the composition 49 

of plant communities and altering ecosystem successional trajectories (Bond 1994; Olofsson 50 

et al. 2004; Raffaele et al. 2011). Herbivores are also an important food source for 51 

predators, and can be a key driver of predator abundance (Sinclair and Krebs 2002). 52 

Management actions that inadvertently affect herbivore populations may therefore have 53 

important implications for ecosystem composition and biodiversity conservation.   54 

 55 

Climate, disturbance events and habitat modification by humans can influence food 56 

availability for herbivores from the bottom-up (Eby et al. 2014; Muhly et al. 2013). For 57 

example, wildfires promote nutrient-rich vegetative growth and attract herbivores 58 

(Fuhlendorf and Engle 2004), with cascading effects on the ecosystem (Raffaele et al. 2011). 59 

Likewise, management interventions such as prescribed burns can facilitate increased 60 

herbivory, with herbivores taking advantage of high-nutrient regrowth and potentially 61 

restricting vegetation recovery (Fuhlendorf et al. 2010; Meers and Adams 2003). High food 62 

availability may enable herbivore abundance to increase beyond the point where predators 63 

can suppress the population (Jedrzejewska et al. 2005).  64 

 65 

Top-down processes such as predation can also strongly influence patterns of herbivory 66 

(Sandom et al. 2013). By killing and consuming herbivores, and altering their behaviour, 67 

predators can restrict herbivore abundance and cause individuals to graze where they are 68 

less vulnerable to predation. For example, small-medium herbivores can hide from 69 

predators in dense vegetation cover (Kuijper et al. 2013) and large herbivores can 70 

selectively graze in open areas with high visibility (Valeix et al. 2009). Herbivory then 71 

becomes concentrated over small areas, producing changes to vegetation (Ford et al. 2014; 72 

Ripple et al. 2001). Consequently, reductions in apex predator populations, by lethal control 73 

or otherwise, are associated with increases in herbivore abundance and occurrence in 74 

forests globally (Colman et al. 2015; Waser et al. 2014). Lethal control of predators can also 75 

induce trophic cascades, including herbivore-related changes to vegetation structure 76 

(Schmitz et al. 2000). Herbivore-release following invasive predator control can sometimes 77 



 4 

have harmful ecological outcomes (Bergstrom et al. 2009), causing uncertainty about the 78 

net value of predator control for biodiversity conservation (Doherty and Ritchie 2016). For 79 

example, poison baiting of red foxes Vulpes vulpes in Booderee National Park, Australia, 80 

caused an irruption in black wallabies Wallabia bicolor that reduced vegetation cover 81 

(Dexter et al. 2013).  82 

 83 

Bottom-up and top-down forces can also interact to shape herbivore distributions (Wisz et 84 

al. 2013). For example, white-tailed deer Odocoileus virginianus select for unburnt areas 85 

post-fire as they offer concealment from predators (Cherry et al. 2016). The role of 86 

interactions in determining herbivore distributions is an important knowledge gap for 87 

ecosystem management, particularly as variations in herbivore numbers may influence 88 

vegetation change over multiple decades (Nuttle et al. 2011).   89 

 90 

Management interventions such as lethal predator control and prescribed burning are 91 

common across Australia, and case-studies indicate that they may promote population 92 

growth in native herbivores, with cascading effects for vegetation and other fauna (Dexter 93 

et al. 2013; Foster et al. 2016). Historically, grazing or browsing by invasive herbivores has 94 

also contributed to the decline of fauna such as the burrowing bettong Bettongia lesueur 95 

(McKenzie et al. 2007; Newsome 1971). Given that native herbivores can also cause 96 

vegetation structural change (Bennett et al. 2019), it is conceivable that overabundant 97 

native herbivores may also drive fauna declines. Further, loss of vegetation cover due to 98 

grazing and prescribed fire may make native mammals more vulnerable to predators 99 

(Hradsky 2019; McGregor et al. 2014). Understanding the indirect effects of management 100 

interventions on both invasive and native herbivore populations is therefore important for 101 

biodiversity conservation.  102 

 103 

Species distribution models predict the likelihood of species occurrence based on presence 104 

(and sometimes absence) records, and can be useful approach for informing environmental 105 

management and planning (Guisan et al. 2013). However, they have not been widely used 106 

to examine the impacts of management interventions on species’ distributions, or to 107 

identify areas where unwanted ecological consequences (such as high herbivory pressure) 108 

are likely to occur.  109 
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 110 

We used a large-scale replicated predator management experiment to examine the relative 111 

influence of red fox control, fire, and other environmental and bioclimatic drivers on the 112 

landscape-scale distribution of medium and large native herbivores. Our study was 113 

conducted in a fragmented mesic forest ecosystem of south-eastern Australia. We predicted 114 

that herbivores would be more likely to occur at sites that: (1) were within fox-baited zones; 115 

(2) had been recently burnt as these species commonly feed on new post-fire vegetation 116 

growth, and (3) were closer to surrounding farmland due to the food resources (e.g. 117 

pasture) provided by agricultural areas. We expected that rainfall and temperature 118 

gradients would mediate these relationships but that, overall, they would have relatively 119 

little influence on herbivore distributions. We also modelled red fox occurrence to confirm 120 

that the fox baiting program influenced the distribution of red foxes. 121 

 122 

Methods 123 

Field surveys 124 

Data were collected across the Glenelg region in far-south-west Victoria, Australia. This 125 

43,500 ha landscape comprises patches of mixed sclerophyll woodland forest and heathy 126 

forest within an agricultural matrix (Fig. 1, Robley et al. 2014). The climate is temperate, 127 

with a mean annual rainfall of 835 - 971 mm, and a mean annual temperature of 11.9 – 128 

17.6 °C (BoM 2017).  129 

 130 

There are two main vegetation types in this region: woodland forest and heathy forest. In 131 

the woodland forest, tall Eucalyptus trees are mixed with a diverse, open midstorey and 132 

understorey. Heathy forests are typified by smaller Eucalyptus species and a complex, often 133 

dense understory dominated by bracken, shrubs and sedges. Natural and prescribed fires 134 

are frequent, creating a complex mosaic of fire histories. Fire in sclerophyll forest impacts 135 

vegetation structure, removing understorey and midstorey vegetation (Bradstock et al. 136 

2002). High severity fires can also cause loss of canopy cover (Bradstock et al. 2002).  137 

 138 

The study area comprised six ‘blocks’ of similar size (Fig. 1; Robley et al. 2014). Three blocks 139 

have undergone an intensive fox baiting program since 2005: southern Lower Glenelg 140 

National Park (8954 ha), Mt Clay State Forest (4703 ha) and Cobboboonee National Park 141 
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(9750 ha). The other three blocks have never been baited: northern Lower Glenelg National 142 

Park (4659 ha), Annya State Forest, (8520 ha) and Hotspur State Forest (6940 ha). Blocks 143 

were at least 10 km apart except for the southern and northern sections of Lower Glenelg 144 

National Park, which are separated by the Glenelg River, forming a barrier to fox movement. 145 

 146 

To quantify the patterns of red fox and native herbivore distribution, camera trap data were 147 

collected annually between October and November from 2013 to 2015 across 40 survey 148 

sites in each block (240 sites in total – Fig. 1; Robley et al. 2014). Camera traps are 149 

commonly used to study fauna occurrence, and are triggered by animal movement through 150 

the camera’s detection range (Rovero et al. 2013). During each survey, camera traps were 151 

deployed for at least 28 days. Camera traps were baited with a mixture of peanut butter, 152 

oats and honey fixed in a small, ventilated container 2 m in front of camera. Full site 153 

selection and camera trapping procedures are described in Robley et al. (2014).  154 

 155 

Variables 156 

We collated presence-absence data for four medium-large native herbivores (black wallaby 157 

Wallabia bicolor, red-necked wallaby Macropus rufogriseus, eastern and western grey 158 

kangaroo Macropus giganteus and Macropus fuliginosus, and common brushtail possum 159 

Trichosurus vulpecula) that were recorded from at least 150 sites across the study period 160 

(2013-2015), as well as the red fox. The two species of grey kangaroo were grouped as they 161 

were difficult to distinguish from camera trap images. We aimed to model species’ 162 

occurrence over the whole study period, and so merged occurrence data at each camera 163 

site across years.  164 

 165 

We used species’ presence/absence to test for associations between environmental 166 

variables and the occurrence of grey kangaroos, common brushtail possums and red foxes. 167 

An absence was defined as no records of the species over the three-year survey period. We 168 

were unable to use this approach for black wallabies or red necked wallabies, as they had 169 

few, or no, recorded absences across the study sites. However, black wallaby habitat use 170 

varies with time of day (Hradsky 2014), so we separated presences and absences for each 171 

wallaby species at each site into day and night datasets. ‘Night’ presences were recorded 172 
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between one hour before sunset and one hour after sunrise, and the remainder were 173 

considered ‘day’.  174 

 175 

We used time-since-fire (categorical: £2 years post-fire, 2-15 years post-fire, 15-35 years 176 

post-fire, or >35 years post-fire), fox control (categorical: baited or unbaited), and the 177 

distance of the camera site from farmland to test our primary hypotheses. These time-since-178 

fire groupings were selected because they represent the key post-fire growth stages of the 179 

vegetation types in the study area (Cheal 2010). We also included a suite of environmental 180 

variables, relating to vegetation type (categorical: woodland forest or heathy forest), 181 

terrain, soil type, and climate (precipitation and temperature) variables that were 182 

hypothesized to influence distribution (Table S1). Environmental variables that exhibited 183 

little or no variation across the study region were not included (e.g. isothermality). Predictor 184 

variables were stored and manipulated in the statistical freeware R v3.3.1 (R Core 185 

Development Team 2017) using the packages raster (Hijmans and van Etten 2014), rgdal 186 

(Keitt et al. 2011) and maptools (Bivand and Lewin-Koh 2013), and software ArcMap v10.3 187 

(ESRI 2014). 188 

 189 

To control for the spatial arrangement of the study blocks, we grouped the study area into 190 

three distinct, ecologically similar regions, each including a baited and unbaited block: 191 

Region 1 encompassed sites in southern and northern Lower Glenelg National Park, Region 192 

2 the sites in Cobobboonee National Park and Hotspur State Forest, and Region 3 the sites in 193 

Mt Clay State Forest and Annya State Forest (Figure 1). 194 

 195 

Model development 196 

We used a two-stage process to develop candidate model sets and identify important 197 

drivers of species’ distributions. First, we selected a subset of environmental variables to 198 

include in the candidate model sets for each species and checked the shape of the 199 

univariate relationships.  We used generalised additive mixed models (GAMMs) with high 200 

degrees of freedom to explore the relationship between each environmental variable and 201 

species separately (Wintle et al. 2005), using the package gam (Hastie 2013). The purpose of 202 

this was to identify the type of environmental variables and their shape that could be used 203 

in explaining species occurrence. We fitted the GAMMs with binomial distributions, using 204 
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‘region’ as the random effect. We used the shape of the relationship (e.g. linear, quadratic, 205 

cubic) between candidate variables and species occupancy to determine the number of 206 

degrees of freedom in the full generalised linear mixed model (GLMM) model selection 207 

routine (see below). We checked for correlations between candidate variables using 208 

Spearman’s rank correlation test. Where two variables were strongly correlated (R > 0.7) or 209 

represented similar environmental factors (e.g. BioClim temperature-related variables), the 210 

variable with the highest univariate GAMM R2m was retained and the other excluded from 211 

further analysis.  212 

 213 

Using the variables identified with the GAMM process, we then developed at least 20 214 

candidate GLMMs for each species, based on the hypothesised major drivers of their 215 

distributions (predator control, fire, vegetation type, climate, topography and landscape 216 

context). The appropriate response shapes for each variable determined in the previous 217 

step. We also included a null model in the candidate set. All candidate models were allowed 218 

no more than m/10 degrees of freedom, where m is the lesser of the number of presences 219 

and the number of absences (Wintle et al. 2005). GLMMs were fitted with binomial error 220 

distributions and logit-link functions, and ‘region’ was included as a random effect to 221 

account for the spatial grouping of sites. For the red-necked wallaby and black wallaby 222 

models, ‘site’ nested within ‘region’ was used as the random effect to account for repeat 223 

sampling of sites between day and night. The full sets of candidate models for each species 224 

are listed in Appendix 1. Analyses were conducted using the packages lme4 (Bates et al. 225 

2014) and MuMin (Barton 2013).  226 

 227 

Model selection & evaluation 228 

We used an information-theoretic approach to select the best model(s) in the set, by using 229 

Akaike’s Information Criterion adjusted for small sample size (AICc) and Akaike weights to 230 

evaluate the relative support for alternative candidate models (Burnham and Anderson 231 

2003). We considered that the model with the lowest AICc was the most highly-ranked, and 232 

those within 2 AICc of the top-ranked model as strong candidates (Burnham and Anderson 233 

2003).  234 

 235 
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The most highly-ranked models were checked for over dispersion (ϕ > 1.5), which can arise 236 

through higher than expected variance in the model (Quinn and Keough 2002). Models were 237 

also checked for spatial autocorrelation of the residuals by plotting spline correlograms of 238 

Moran’s I for the residuals of the most highly-ranked model (Dormann et al. 2007). For all 239 

models, the 95% confidence intervals overlapped zero at the distances between sites, 240 

indicating that residuals were not spatially autocorrelated. This was done in the package ncf 241 

(Bjørnstad 2008). 242 

 243 

To check that merging species’ occurrence data across years did not mask any effects of 244 

between-year variation in fire history on model predictions, we built the same set of 245 

candidate models for each species by treating the 13 sites that changed fire history (i.e. 246 

were burnt) during the study period as separate sites. Model ranks and coefficients were 247 

not substantially different to the merged dataset, and so results are not presented. 248 

 249 

To evaluate how well the most highly-ranked models fitted the data, we calculated the 250 

variance explained by the fixed effects (marginal R2), and fixed and random effects 251 

(conditional R2) (Nakagawa and Schielzeth 2013).  252 

 253 

To evaluate model performance, we calculated the area under the receiver operating curve 254 

(AUC) statistic using the k-fold cross-validation technique, using ten folds, following the 255 

process outlined in Hijmans and Elith (2013). For each species, we present the mean AUC 256 

value and standard error across the ten folds. AUC indicates the ability of a model to rank 257 

locations of presences more highly than locations of absences when predicting the 258 

probability of occurrence at a location. Models with an AUC between 0.5 and 0.7 have a 259 

better than random predictive capacity, and models with an AUC between 0.7 and 0.9 have 260 

good predictive capacity (Pearce and Ferrier 2000). Analysis was done using the dismo 261 

package (Hijmans et al. 2015).  262 

 263 

For the best model for each species, we used the predict function in dismo to generate 264 

raster-based model predictions. We then used these maps to predict each species’ 265 

probability of occurrence across the study area. For these maps, we defined the study area 266 

as the broad baited and unbaited blocks in which the camera surveys were undertaken. 267 
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 268 

Results 269 

Models 270 

The two top-ranked models of grey kangaroo occurrence received similar support (Table 1). 271 

Grey kangaroos were less likely to occur at sites in blocks that had been baited for foxes (Fig 272 

2a); the 95% confidence intervals of all other predictors overlapped zero.  273 

 274 

The top-ranked model of red-necked wallaby occurrence had strong support (Table 1), 275 

indicating a positive association of the species with soil thorium, and a higher likelihood of 276 

red-necked wallabies occurring in woodland forest vegetation than heathy forest during the 277 

day (Fig 2b) and either vegetation type at night. 278 

 279 

Two candidate models were highly ranked and explained a moderate amount of variation in 280 

common brushtail possum occurrence (Table 1). Brushtail possums were more likely to 281 

occur in woodland forest. There was also some evidence that brushtail possum occurrence 282 

was positively related to precipitation in the coldest quarter and negatively related to 283 

distance from farmland, but confidence intervals were wide (Fig 2c). 284 
 285 

The distribution of the black wallaby could not be modelled as it was present at nearly all 286 

sites during both day and night.  287 

 288 

Three similar candidate models for the red fox had predictive value, each explaining at least 289 

45% of variation in red fox occurrence (Table 1). All top-ranked models indicated that red 290 

foxes were half as likely to occur at sites within baited blocks than unbaited blocks, and 291 

were more likely to occur in woodland forest vegetation than heathy forest (Table 1, Fig. 292 

2d).  293 

 294 

The full set of candidate models for red fox (Table S2), red-necked wallaby (Table S3), grey 295 

kangaroo (Table S4) and common brushtail possum (Table S5) are detailed in the 296 

Supplementary Information.  297 

 298 

Model evaluation 299 
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The highest ranked GLMM had good predictive capacity for grey kangaroos (AUC = 0.72 ± 300 

0.05, Deviance Explained by fixed effects (DE) = 0.12), common brushtail possums (AUC = 301 

0.80 ± 0.02, DE = 0.26) and red foxes (AUC = 0.83 ± 0.03, DE = 0.26). The predictive capacity 302 

of the red-necked wallaby model was good during the day (AUC = 0.70 ± 0.07, DE = 0.11), 303 

but low for night (AUC = 0.65 ± 0.05, DE = 0.04).  304 

  305 
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Discussion 306 
Our study highlights the importance of climatic and habitat-related factors as drivers of 307 

native herbivore occurrence in south-eastern Australia. Although fox baiting substantially 308 

reduced fox occurrence, herbivore distributions were generally more strongly associated 309 

with climate, soil chemistry, topography and proximity to agricultural land than predator 310 

management. Time-since-fire also did not affect the occurrence of any target herbivore 311 

species, or foxes. These findings contrast strongly with other Australian studies that have 312 

found that variation in predation rates and fire strongly influence the abundance (rather 313 

than occurrence) of native herbivores (Dexter et al. 2013; Foster et al. 2015), although 314 

effects on native herbivore occurrence are less well understood. Our findings are, however, 315 

consistent with other studies that have found little influence of time-since-fire on fox 316 

distribution at a landscape scale (Hradsky et al. 2017; Payne et al. 2014) and broader trends 317 

across other predators species (Geary et al. 2019). 318 

 319 

Red foxes were significantly less likely to occur in fox-baited blocks than unbaited blocks 320 

across Glenelg. Red foxes prey heavily on small and medium-sized macropods (e.g. black 321 

wallaby) and brushtail possums (Davis et al. 2015), and so we expected that these 322 

herbivores would respond positively to fox control and be more likely to occur at sites 323 

within the baited blocks. However, we found no evidence of a positive association with fox 324 

baited areas.  This contrasts with findings from other mesic forest systems in Australia on 325 

changes in herbivore abundance after fox and dingo removal, respectively (Colman et al. 326 

2014; Dexter et al. 2013), and suggests that in the Glenelg region, either: (1) foxes do not 327 

exert top-down pressure on herbivore occurrence (as they may not be predating on a 328 

significant proportion of the herbivore population, and/or their top-down pressure of fox 329 

predation on herbivores is relatively weak compared to dingo predation), (2) fox densities in 330 

baited areas have not been reduced enough to release herbivores from top-down control 331 

and lead to increases in occurrence, or (3) any effects of fox baiting on herbivore occurrence 332 

were masked by the north-south spatial configuration of baited and unbaited blocks (Fig. 1), 333 

which may correlate with a relatively dryer climate in the north of the study area compared 334 

with the south. Given the widespread occurrence of the herbivore species and the 335 

fragmented nature of the ecosystem, we suspect the former: the suppressive effects of 336 

predators can be reduced in high productivity systems of agriculture-forest matrices 337 
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(Pasanen-Mortensen et al. 2017). This is despite top-down control typically being stronger 338 

in intact, productive landscapes compared with unproductive landscapes (Elmhagen et al. 339 

2010; Greenville et al. 2014).  However, the north-south gradient may explain why grey 340 

kangaroos were less likely to occur at baited sites, contrary to our expectations – we are not 341 

aware of a reasonable mechanism that would cause grey kangaroo occurrence to decrease 342 

in response to fox-baiting. 343 

 344 

Although fox baiting had no effect on the occurrence of herbivores, more subtle effects of 345 

predator baiting on herbivore populations (e.g. changes in abundance) may not have been 346 

apparent from our presence-absence data. For example, differences in predation pressure 347 

could influence herbivore abundance and herbivory pressure, without affecting herbivore 348 

distributions. Recent studies that have reported positive herbivore responses to dingo or fox 349 

control have used abundance, fecundity and activity indices to measure herbivore 350 

responses, rather than presence-absence data (e.g. Banks et al. 2000; Colman et al. 2015; 351 

Dexter et al. 2013).  352 

 353 

Our second hypothesis—that herbivores would be more likely to occur at recently-burnt 354 

sites was also not supported. Other studies have highlighted the importance of fire in 355 

determining herbivore distributions (Bowman et al. 2016; Eby et al. 2014; Meers and Adams 356 

2003), yet we found no evidence of this within the Glenelg region. Similarly, Kelly et al. 357 

(2017) found that temperature and precipitation were more important drivers of vertebrate 358 

distributions than fire history in foothill forests. There are several possible explanations. 359 

First, relationships between herbivore abundance and fire history may have been reflected 360 

by changes in abundance, but not changes in occurrence. Second, herbivores may respond 361 

more strongly to fires in ecosystems with grassy understories, rather than those in mesic 362 

forests (Kirkpatrick et al. 2016). Alternatively, consistently high resource availability from 363 

the surrounding farmland might dampen the effect of stochastic changes in resources (such 364 

as those caused by fire) on herbivore occurrence: high-nutrient vegetation in recently burnt 365 

patches may not provide greater sustenance than surrounding vegetation in highly 366 

productive environments (Styger et al. 2011). 367 

 368 
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Time-since-fire metrics, such as the one used in our study, have limited use in predicting 369 

faunal responses to fire (Sitters et al. 2014). Fire often indirectly influences fauna through its 370 

effects on habitat structure, meaning that habitat complexity is more strongly associated 371 

with faunal occurrence than time-since-fire (Monamy and Fox 2000; Swan et al. 2015). In 372 

addition, environmental variables that influence habitat recovery after fire can cause 373 

divergent responses at sites with similar fire histories (Hale et al. 2016; Keeley et al. 2011; 374 

Nimmo et al. 2014). The quality of spatial fire history information may also limit our 375 

understanding the effects of fire on ecosystems (Avitabile et al. 2013; Callister et al. 2016). 376 

 377 

Our third hypothesis—that herbivores would be more likely to occur at sites closer to 378 

farmland—was partially supported. We found some evidence that common brushtail 379 

possums were more likely to occur at sites closer to farmland, but no evidence of a 380 

relationship for grey kangaroos or red-necked wallabies. Some herbivores use agricultural-381 

forest matrices (Molloy et al. 2016), and can be released from top-down suppression in 382 

highly productive anthropogenic landscapes that provide abundant food resources 383 

(Pasanen-Mortensen et al. 2017). Food is also more readily available to some predators in 384 

modified landscapes (Kuijper et al. 2016; Newsome et al. 2017), further weakening 385 

predator-prey interactions (Rodewald et al. 2011). Given that the study area is in an 386 

agricultural matrix, this might explain why there was no evidence that herbivores were 387 

more likely to occur in fox-baited blocks at Glenelg. 388 

 389 

Climate, soil and vegetation-related variables can be important drivers of herbivore 390 

distributions as they influence resource availability (Ritchie et al. 2008). Contrary to our 391 

predictions, these variables were the most important predictors of herbivore occurrence in 392 

our study region. Red-necked wallabies, common brushtail possums and foxes were all 393 

more likely to occur in woodland forest than heathy forest. Woodland forests are likely to 394 

provide more food resources for herbivores, and facilitate easier movement of both 395 

herbivores and predators due to the more open understorey (Catling et al. 2001). 396 

Precipitation was positively associated with the occurrence of common brushtail possums. 397 

positive relationship with soil thorium for red-necked wallabies and brushtail possums may 398 

also relate to resource availability, as high soil thorium concentrations are associated with 399 

nutrient-rich clay soils favourable for the growth of palatable plants (Mernagh and Miezitis 400 
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2008). Topography was an important predictor of occurrence for grey kangaroos, with this 401 

species being more likely to occur at higher elevations. These associations could reflect the 402 

influence of environmental gradients on the food plants for each species, and/or direct 403 

ecophysiological constraints (Kearney and Porter 2009; Sunday et al. 2014).  404 

 405 

The role of predators in ecosystems, hypothesized interactions between ecological 406 

processes (e.g. trophic interactions, disturbance) and the potential unintended 407 

consequences of lethal predator control are increasingly relevant for ecosystem 408 

management (Doherty et al. 2015). Evidence is required to inform changes in management 409 

regimes. In our study, herbivore distributions appeared to be most influenced by vegetation 410 

type and topographic factors, rather than disturbance or red fox control. While predator 411 

and fire management actions may influence herbivore occurrence or abundance at a finer 412 

spatial or temporal resolution than explored here, our study suggests that habitat features 413 

play a more important role at the broad-scale.  414 

 415 

Pairing herbivore distribution models with distribution models of species that are 416 

potentially vulnerable to increased herbivory, such as small and medium-sized mammals 417 

(Foster et al. 2014), could help managers prioritise locations where interventions may be 418 

needed. Species distribution models have been applied in similar fashion elsewhere globally 419 

to predict, among other things, the impacts of invasive species (Gallien et al. 2012). Further 420 

developments that incorporate biotic interactions into spatial models and decision tools, 421 

such as joint species distribution models (Pollock et al. 2014) or spatially explicit population 422 

dynamic models (Akçakaya et al. 1995) would provide additional insight into the trophic 423 

dynamics and optimal management of fragmented forest ecosystems. 424 
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Figure Captions 688 

 689 
Figure 1:  Camera survey sites within the three baited (black dots) and three unbaited (grey 690 

circles) blocks within Victoria (inset), south-eastern Australia.  The solid black line indicates 691 

areas where poison baits are deployed for red fox Vulpes vulpes control. Grey shading 692 

shows public land. 693 

 694 

Figure 2: Mapped predicted probability of occurrence for the most highly-ranked 695 

distribution model (fixed effects only) for a) grey kangaroo Macropus sp., b) red-necked 696 

wallaby M. rufogriseus (day time model), c) common brushtail possum Trichosurus vulpecula 697 

and d) red fox Vulpes vulpes.  698 
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Table 1: Coefficients, 95% confidence intervals and sum of Akaike weights (åwi) for each predictor in the highly ranked species distribution models (DAICc < 2.0). 699 
Coefficients are relative to the reference level of unbaited heathy forest. Also shown is the difference in Akaike Information Criterion adjusted for small sample size from 700 
the top-ranked model (DAICc), the Akaike weight (w), and the marginal (R2m) and conditional (R2c) R2 of each model. Bolded coefficients are those whose 95% confidence 701 
intervals do not overlap zero.  702 
 703 
Species Rank Coefficients DAICc w R2m R2c 

Red-
necked 
wallaby 

 Vegetation type 
(woodland) 

Diel period (night) Diel : veg Thorium        

1 1.59 [0.75, 2.46] -0.58 [-1.29, 0.09] -1.10 [-2.01, -0.22] 0.44 [0.21, 0.67]    0.00 0.99 0.15 0.36 

åwi 1.00 1.00 1.00 1.00        

Grey 
kangaroo 

 Vegetation type  
(woodland) 

Treatment (baited) Veg : treatment Thorium Ruggedness Elevation Precipitation during  
driest Q 

    

1 -1.23[-3.34, 0.88] -3.14[-5.26, -1.03] 1.95 [-0.31, 4.21] - - 0.38 [-0.02,0.78] - 0.00 0.22 0.27 0.27 
2 - -2.05[-2.81, -1.29] - 0.22 [-0.14, 0.59] -0.19 [-0.53, 0.15] - 0.28 [-0.04,0.59] 1.36 0.11 0.24 0.24 
åwi 0.57 1.0 0.37 0.48 0.46 0.48 0.29     

Common 
brushtail 
possum 

 Vegetation type 
(woodland) 

Treatment (baited) Paddock Distance Precipitation in 
Coldest Q 

Mean Temp in 
Coldest Q 

Elevation      

1 1.77 [0.88,2.65] - -0.33 [-0.72, 0.06]  0.34 [-0.06, 0.75] 0.39 [-0.14,0.92] -  0.00 0.28 0.15 0.50 
2 1.80 [0.92,2.68] -0.92 [-2.40, 0.66] -0.35 [-0.75, 0.05] 0.67 [0.06, 1.29] - -0.79 [-1.65, 0.07]  0.95 0.17 0.24 0.45 
åwi 1.0 0.5 1.0 0.88 0.55 0.54      

Red fox 

 Vegetation type 
(woodland) 

Treatment (baited) Tree Density Precipitation in 
Coldest Q  

       

1 1.36 [0.59, 2.12] -2.95 [-3.76, -2.13] -0.45 [ -1.05, 0.14] -    0.00 0.29 0.48 0.48 
2 1.33 [0.57, 2.09] -2.98 [-3.78, -2.17] - -    0.84 0.19 0.45 0.45 
3 1.31 [0.55, 2.08] -2.54 [-3.65, -1.44] - -0.32 [-0.91, 0.27]    1.75 0.12 0.46 0.46 
åwi 1.0 1.0 0.40 0.14        

 704 
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