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Quantifying the impact of vegetation-based metrics on species persistence when 1 

choosing offsets for habitat destruction  2 

Abstract 3 

Developers are often required by law to offset environmental impacts through targeted 4 

conservation actions. Most offset policies specify metrics that are used to calculate offset 5 

requirements, usually assessing vegetation condition or quality. Despite widespread use, there is 6 

little evidence to support the effectiveness of vegetation-based metrics for ensuring biodiversity 7 

persistence. Here, we compared performance of several commonly used metrics by simulating 8 

development and restoration within the Hunter Region of New South Wales, Australia. We 9 

measured development impacts and offset requirements using four metrics: 1) area only; 2) 10 

vegetation condition only; 3) area x habitat suitability, 4) condition x habitat suitability. We simulate 11 

development and subsequent offsetting through restoration within a virtual landscape, linking 12 

simulations to population viability models for three species; the squirrel glider (Petaurus 13 

norfolcensis), the powerful owl (Ninox strenua) and the northern brown bandicoot (Isoodon 14 

macrourus). Our results show that 1) gains in suitable habitat did not translate through to species 15 

persistence. No net loss could be achieved when performance of offsetting was assessed in terms 16 

of amount of suitable habitat, but not when outcomes were assessed in terms of persistence; 2) 17 

Maintenance of persistence was more likely when impacts were avoided, giving further support 18 

to better enforce the avoidance stage of the mitigation hierarchy; 3) When developments do 19 

impact areas of high suitability for species, it is essential that species are explicitly accounted for 20 

in the offset, rather than just vegetation or habitat alone. Declines due to a failure to account 21 

directly for species population dynamics and connectivity may overshadow the benefits delivered 22 

by producing large areas of suitable habitat; 4) Our modelling framework with just three species 23 

showed that the benefits delivered by offsets are species-specific, such that implementing offsets 24 

will be much more challenging in reality where multiple species need to be considered.  25 
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Introduction 26 

Biodiversity offsetting is used around the globe to deliver conservation gains aimed at achieving 27 

a no net loss or a net gain of biodiversity to compensate for impacts caused by development (Bull 28 

et al. 2016a). However, lack of consistency in offset policies at different levels of governance (e.g. 29 

state versus federal), and different stages of offsetting make it difficult to consistently define the 30 

meaning of no net loss (Maron et al. 2018). Moreover, it is unclear whether offsets achieve their 31 

claimed conservation outcomes under current frameworks (zu Ermgassen et al. 2019). The 32 

ineffectiveness of biodiversity offsets has been attributed to inconsistent and unclear biodiversity 33 

metrics (Gibbons et al. 2018), and inadequate post-implementation monitoring and compliance at 34 

offset sites (Theis et al. 2019).  35 

Accurately measuring biodiversity is challenging, and most offsetting metrics consist of simple 36 

habitat condition or area scores calculated based on vegetation surrogates (Marshall et al. 2019; 37 

zu Ermgassen et al. 2019). Popular offsetting metrics assign condition or quality scores to a site 38 

by assessing, scoring and weighting several vegetation attributes (Oliver et al. 2014). In the case 39 

of habitat condition scores varying across an area of impact, it is common to simply sum scores 40 

such that, for example, 25 hectares of perfect condition vegetation would receive the same overall 41 

offset score as 50 hectares of vegetation with half the condition (Marshall et al. 2019).  42 

Reliance on habitat and vegetation-based offsetting metrics (Gibbons et al. 2018) can be 43 

problematic when such metrics do not strongly correlate with the ecological features that an 44 

offsetting program seeks to conserve (Kujala et al. 2015). Research has demonstrated that habitat 45 

attributes and vegetation-based surrogates fail to capture the extent of biodiversity that is often 46 

claimed (Cristescu et al. 2013; Hanford et al. 2016). Moreover, current offsetting metrics are likely 47 

to result in undervaluation of degraded or smaller patches, even when these are of high ecological 48 

importance (Wintle et al. 2019).  49 
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The premise of many offset policies is to ensure persistence of populations, species, ecosystems 50 

and communities (Maron et al. 2012). However, this goal is not currently supported by relevant 51 

metrics. No net loss policies require that offset sites deliver the same or higher vegetation 52 

condition scores compared to impact sites, but achieving this target alone may not ensure these 53 

sites will deliver long-term benefits or ensure persistence for populations or species (Gardner et 54 

al. 2013). Therefore, assessment of the ability of vegetation condition to act as a surrogate for 55 

species persistence would appear to be a necessary first step in offset policy evaluation. 56 

Research has suggested that combining vegetation condition measures with explicit species 57 

assessments in an adaptive management framework can be an effective approach to offset 58 

management (Drielsma et al. 2016). However, little quantitative research has tested how 59 

vegetation-based offset metrics truly function in relation to species persistence targets (Gelcich 60 

et al. 2017).  61 

To address this research gap, we developed a simulation framework to compare performance of 62 

commonly used vegetation-based offset metrics with alternative metrics that include more 63 

detailed species data. Our framework combines a model simulating development and offsetting, 64 

with population viability analyses for three species in the Hunter Region, New South Wales 65 

(NSW), Australia. We aimed to understand how vegetation-based offset metrics capture 66 

development impacts on 1) habitat suitability and 2) persistence of target species.  67 

Methods 68 

Study region 69 

The Hunter Region in New South Wales (NSW), Australia (Fig 1) extends approximately 120 to 70 

310 km north of Sydney. The region has a long history of agriculture and coal mining, with future 71 

mines expected to occupy 21% of the Hunter Valley (90,500 hectares; Kujala, Whitehead, & 72 

Wintle, 2015). Future developments are intended to be targeted towards already cleared or 73 
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degraded areas, however, there will likely be impacts on biodiversity which will need to be offset 74 

(NSW Government; Planning and Environment 2016).  75 

Target species  76 

This region is home to several susceptible species including the three considered here; the 77 

squirrel glider, powerful owl, and northern brown bandicoot. Squirrel gliders are hollow nesting, 78 

gliding marsupials widely distributed along the east coast of Australia (Sharpe & Goldingjay 2017). 79 

The powerful owl is a large owl with a wide home range found within south-eastern Australia 80 

(Soderquist & Gibbons 2007). Both species are considered vulnerable in New South Wales. 81 

Lastly, northern brown bandicoots are medium-sized ground dwelling marsupials, with short life-82 

cycles, high population growth rates and moderate dispersal (Ramalho et al. 2018). This species 83 

is not currently considered threatened. These species were primarily selected because they are 84 

sufficiently well studied to build spatially explicit population models and because two are 85 

considered vulnerable in New South Wales, although none are federally listed. They would 86 

therefore be unlikely to be considered in offsets under the national legislation but may be 87 

assessed under state offset policies.  88 

Habitat and species data  89 

We used two types of raster maps to conduct our simulations; a vegetation condition map and 90 

species habitat suitability maps (Kujala et al. 2015). The vegetation condition map estimates the 91 

native vegetation condition for the Hunter Region at 100 m grid cell resolution, scored between 92 

zero and one depending on known land use categories. A zero value indicates areas containing 93 

no natural vegetation, whereas a value of 0.5 could indicate agricultural land with remnant 94 

vegetation. A value of one indicates extant and relatively undisturbed vegetation (Appendix A1). 95 

Species distribution models (SDMs; 100 m grid cell resolution) were built for each species using 96 

MaxEnt (Elith et al. 2011; Kujala et al. 2015), again with values ranging between zero and one 97 

(Appendix A2). Being based on presence-only data, the SDMs represent only relative habitat 98 
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suitability for each species in the region (Guillera-Arroita et al. 2015). We interpreted MaxEnt’s 99 

logistic output values as roughly indicative of relative carrying capacity (Merow et al. 2013), giving 100 

the fraction of maximum carrying capacity attainable for each species (Appendices A). As MaxEnt 101 

outputs are not comparable between species, we examined relative changes in total habitat 102 

suitability between scenarios only within species. Here we assumed that restoration efforts 103 

ensured maximum potential habitat suitability values from this layer could be achieved.  104 

We multiplied our vegetation condition layer and SDMs to produce a proxy of current habitat 105 

suitability (Appendix A3) for each species, with values ranging between zero and one. The 106 

resulting current habitat suitability map for each species represented the baseline used to 107 

compute the impacts of each development and its required offset. This was also the baseline map 108 

used to define landscape structure and determine carrying capacity in our spatially explicit 109 

population viability analyses (PVAs). 110 

Modelling framework  111 

We used the above raster layers as inputs to simulate development impacts and calculate offset 112 

requirements within R v3.6 (The R Foundation for Statistical Computing 2017). All development 113 

and offset simulations used our current habitat suitability map as a baseline for each species. 114 

Each subsequent raster generated by the simulations was then used to represent habitat changes 115 

within the PVAs for each species.  116 

Our modelling framework involved five steps: 1) simulate developments; 2) calculate offset 117 

requirements; 3) restore vegetation until offset requirements are met; 4) construct a landscape 118 

patch structure for the species in RAMAS; and 5) build population models in RAMAS for the 119 

species to predict population persistence (Fig 2). Restoration was assumed to return vegetation 120 

condition back to the highest level immediately. This assumption was consistent across all 121 

metrics.  Because we were interested in comparing relative performance of offset metrics, rather 122 

than providing realistic predictions about restoration success, it was deemed unnecessary to 123 
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perfectly characterise variation in restoration outcomes.  Nonetheless, we acknowledge that this 124 

is a coarse simplification of likely success of restoration efforts (Maron et al. 2012). All R scripts 125 

have been deposited in a dedicated GitHub repository (Appendices B).  126 

Development impacts  127 

We simulated four development scenarios for each species; S1) large developments with strict 128 

avoidance; S2) large targeted developments; S3) small developments with strict avoidance; and 129 

S4) small targeted developments. All four scenarios had a total development footprint of 100,000 130 

hectares (approximately 21% of the landscape). Large developments were each 10,000 hectares 131 

in size and occurred ten times in the landscape during one simulation (S1, S2). Small 132 

developments were 1,000 hectares and occurred 100 times (S3 and S4). S1 and S3 represented 133 

our strict avoidance scenarios where development was targeted towards the least suitable habitat 134 

for each species, based on species current habitat suitability. This aligns with offsetting best 135 

practices where strict adherence to the avoidance stage of the mitigation hierarchy is ideal 136 

(Phalan et al. 2017). In targeted development scenarios S2 and S4, development was equally 137 

directed to high suitability areas to represent a worst-case scenario. We also simulated two 138 

additional development scenarios where impacts were allocated randomly (Appendix B1; D7). 139 

Each scenario was repeated 50 times to account for spatial stochasticity. Development impacts 140 

reduced vegetation condition of impacted grid cells to zero.  141 

Offset metrics and simulation 142 

We calculated offset exchanges using four metrics: 1) area only; 2) vegetation condition only; 3) 143 

area x habitat suitability, and 4) condition x habitat suitability. The first metric (Area) was based 144 

solely on the area of habitat lost due to development, and the offset simply restored the same 145 

area of habitat elsewhere. The second metric (Condition) was calculated by summing the current 146 

habitat condition lost due to development, and restoration was required to enhance habitat 147 

condition by an equivalent amount elsewhere. The third metric (AreaXSDM), as with Area only, 148 
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was based on the area lost due to development but differed in that offsets were restricted to an 149 

equivalent area in the landscape that was also suitable habitat for the species as modelled by the 150 

SDM (after applying a species-specific threshold to delineate habitat suitability; Appendix C1). 151 

The last metric (ConditionXSDM), as with Condition only, offset the summed current habitat 152 

condition lost due to development but restoration was again restricted to parts of the landscape 153 

which were suitable for the species as modelled by the SDM (Appendix B2).  154 

These metrics are intended as coarse simplifications of offset metrics currently used in Australia. 155 

In New South Wales, offset legislation relies on the Biodiversity Assessment Method (BAM) which 156 

incorporates 30 measures of habitat and landscape to assess biodiversity (NSW Office of 157 

Environment and Heritage 2018). These are largely focused on habitat features. When species 158 

are accounted for in the BAM metric, they are usually a threatened or at-risk species, and 159 

measurements generally include species presence or absence as well as species habitat 160 

suitability. These are measures accounted for in the above metrics, albeit simplistically. We used 161 

a multiplier of two for all offset targets, meaning that offsets needed to deliver gains twice the 162 

amount lost. Large multipliers (e.g. ten or higher) are more likely to ensure no net loss , however, 163 

relatively low multipliers (e.g. two or three) are commonly used in practice (Laitila et al. 2014; Bull 164 

et al. 2016b). Multipliers in the BAM vary between one and three and depend species’ sensitivity 165 

to loss and their sensitivity to offset gains. Therefore, the multiplier of two we have used here 166 

accounts for a moderate to high sensitivity to loss and a moderate to high potential gain (NSW 167 

Office of Environment and Heritage 2018). 168 

For all repetitions of our development scenarios we restored impacts using all four metrics. A 169 

starting point for restoration was randomly selected within a buffer zone around the development 170 

(Appendix B). Each cell neighbouring the starting point was searched and restored until the total 171 

offset requirement was met. At the end of each simulation an updated raster layer was generated 172 

with the simulated developments, and offsets added to the species current habitat suitability layer.  173 
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Spatially explicit Population Viability Analysis (PVA) 174 

Population Viability Analyses (PVAs) estimates the probability of a species persisting in a 175 

landscape given its habitat requirements, dispersal ability and demographic variables (Akçakaya 176 

& Root 2005). We built spatially explicit PVAs for each species using the software RAMAS GIS 177 

v5.1. First, we used the current habitat suitability maps of the species to develop the baseline 178 

patch structure and to simulate population dynamics over a 100-year time period prior to any 179 

developments or offsets. Patch structure is delineated by RAMAS using a habitat suitability 180 

threshold and species-specific information on dispersal (Akçakaya & Root, 2005; Fig 1). We used 181 

the species-specific maximum training sensitivity plus specificity (MTSS; Cardador et al., 2018) 182 

as our threshold, which was extracted from the MaxEnt model outputs (Appendix C1). We derived 183 

species-specific dispersal and demographic parameters from the literature and tested them 184 

through sensitivity analyses (Appendix C1; D1). We then re-ran the PVAs for each species, 185 

replacing the baseline patch structures with those generated from development and offset 186 

simulations. 187 

Scenario Analysis  188 

We ran 50 simulations per development scenario and 50 corresponding restorations for each 189 

metric, for all three species, for which PVAs were run for 1000 replicates over 100 years. We used 190 

two measures to evaluate metric effectiveness: 1) percentage change in total Habitat Suitability 191 

(HS) from baseline, calculated using the species’ updated raster maps; and 2) percentage change 192 

in average Estimated Minimum Abundance (EMA) from baseline, calculated from the PVAs. EMA 193 

is the smallest population size that occurs across the duration of a simulation averaged across 194 

replicates (Wintle 2013). We examined confidence intervals around the 50 repeats to assess 195 

correlations between metric use and changes in HS and EMA from baseline. We also assessed 196 

changes in landscape structure by comparing mean number and size of suitable habitat patches 197 

in the landscape with minimum and maximum EMA values (Appendix E1).  198 
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Results  199 

Change in habitat suitability  200 

Development impacts  201 

Impacts of development on the percentage change in HS were consistent across species but 202 

varied between scenarios. Development had the greatest impact on HS when it was targeted 203 

towards high suitability areas (S2 and S4). On average our simulations caused a 10.5% decline 204 

in HS for our species in scenarios S2 and S4 (±0.8%; Fig 3). Comparatively, when development 205 

impacts strictly avoided areas of importance in the landscape (S1 and S3), species lost on 206 

average 1.7% of their habitat (± 0.5%; Fig 3).  207 

Offset metrics 208 

The effectiveness of offset metrics in compensating for development impacts on HS varied 209 

between development scenarios and species. However, the Area only approach consistently 210 

failed to achieve no net loss of HS for all scenarios and species (Fig 3). Thus, simply 211 

compensating for the area lost did not produce enough habitat to match development impacts. 212 

Under the avoidance scenarios (S1 and S3), the three remaining metrics achieved net gains in 213 

HS for all species (Fig 3). However, when developments were targeted (S2 and S4) the benefits 214 

delivered by most metrics – except ConditionXSDM – were smaller. AreaXSDM failed to achieve 215 

a no net loss for the powerful owl and northern brown bandicoot in S2 and for all three species in 216 

S4. This is likely because in high impact development scenarios, even when offsets are targeted 217 

towards high suitability pixels (e.g. AreaXSDM), simply matching area alone will not compensate 218 

for enough of the lost condition to return the overall HS back to the species baseline level.  219 

ConditionXSDM produced net gains in all four development scenarios across all three species. 220 

Notably, when using the ConditionXSDM metric, since offset requirements were extremely high, 221 

around 24% and 28% respectively of powerful owl and northern brown bandicoot offset 222 

requirements in S2 and S4 were not met. In these scenarios the simulation ran out of habitat to 223 
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restore to match high offset requirements and still resulted in large net gains in HS compared to 224 

baseline.  225 

The Condition only approach also achieved no net loss and sometimes net gains in HS for all 226 

species and scenarios; however, gains were smaller than the ConditionXSDM metric (Fig 3). 227 

Compensating for condition, particularly when coupled with information on SDMs, resulted in 228 

larger offset areas than area-based metrics (Appendix E2). For all species the ConditionXSDM 229 

metric resulted on average in patches 1.4 times larger than the other three metrics and 1.7 times 230 

larger than the species baselines patch structure (Fig 5). 231 

Change in Estimated Minimum Abundance (EMA)  232 

Development impacts  233 

Development impacts on EMA were not proportional to impacts observed on HS and varied 234 

between species and scenarios (Fig 4). Declines in EMA were less dramatic when the size of the 235 

development was small (Fig 4; S3, S4), except for the powerful owl, for which highest declines 236 

were observed under the small targeted scenario (S4). Development impacts on squirrel glider 237 

EMA were higher than the other two species, particularly when the developments were targeted 238 

(Fig 4; S2, S4). Under all four development scenarios, changes in northern brown bandicoot EMA 239 

were minimal and even showed a small net gain in S4 (Fig 4). This could be due to the high 240 

reproduction rates of northern brown bandicoots as well as the influence of development on the 241 

landscape structure which may have been more favourable for this species.  242 

Offset metrics 243 

The four offset metrics varied notably, between species and scenarios, in the benefits they 244 

delivered to population persistence but generally most of the metrics failed to achieve net gains. 245 

In our worst-case scenarios, S2 and S4, no net loss in EMA was only rarely achieved, only for the 246 

northern brown bandicoot and powerful owl in some replicates, and only when using Area only 247 

and AreaXSDM (Fig 4). Generally, all three species suffered significant population declines 248 
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across all metrics even when these metrics resulted in significant gains in HS (e.g. 249 

ConditionXSDM; Fig 3).  250 

Development impacts on squirrel glider EMA were best offset when using metrics which included 251 

species-specific information on habitat suitability (SDM, Fig 4). When development impacts were 252 

small, and a strict avoidance approach was taken the two SDM inclusive metrics were able to 253 

achieve net gains for the squirrel glider. Comparatively, no net loss of EMA for powerful owls was 254 

only achieved in some simulations, generally when using the Area metric (Fig 4), even though 255 

this metric failed to achieve a no net loss in HS (Fig 3). Similarly, not net loss was achieved for 256 

northern brown bandicoots in some replicates when using the two area-based metrics (Fig 4). 257 

Condition-based approaches only resulted in no net loss for northern brown bandicoots in some 258 

simulations when the development impacts were untargeted (Fig 4; S1, S3).  Across all three 259 

species, the ConditionXSDM metric, which produced the largest gains in HS, frequently failed to 260 

compensate for declines in EMA. In powerful owls and northern brown bandicoots, the use of this 261 

metric resulted in larger declines than development on its own (Fig 4).  262 

Landscape configuration and population declines  263 

Scenarios that resulted in more patches, generally resulted in higher EMA values for all species 264 

(Fig 5). The largest declines in EMA occurred when the development or offsets reduced the 265 

number of patches available in the landscape. Furthermore, across all species EMA was highest 266 

when patch size was smaller although this relationship was not as clear for the squirrel glider (Fig 267 

5). It appears that in scenarios where patch size was large, such as for the ConditionXSDM metric 268 

(Appendix E3), there was a corresponding decline in the number of patches available and overall 269 

lower EMA values relative to the species’ baselines. This is clear in northern brown bandicoots 270 

and powerful owls where ConditionXSDM produced extremely large patches with fewer patches 271 

available overall (Fig 5). This suggests that, at least for these species, producing large continuous 272 
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offset patches may not ensure population persistence is maintained. Instead, scenarios which 273 

resulted in maintaining multiple patches had overall the highest EMA (Fig 5). 274 

Discussion  275 

Our study quantitatively demonstrates how habitat loss and mitigation of these losses translates 276 

to species persistence. Here we found that when performance of offsetting is measured in terms 277 

of total habitat gains, achieving no net loss, and even net gains is feasible using the metrics we 278 

tested. This was particularly apparent when information on a species’ habitat suitability was 279 

included in offset calculations. In all four development scenarios, metrics which accounted for 280 

SDM values delivered the highest net gains in habitat suitability (HS; Fig 3). This may be important 281 

when developments are likely to impact core habitats and therefore require offsets to be 282 

strategically assigned to areas of high suitability (Gordon et al. 2011). Conversely, offset trades 283 

based solely on area lost versus area gained failed in all cases to deliver a no net loss in HS for 284 

all three species (Fig 3). Thus, simply accounting for area resulted in offsets which were too small 285 

to match development impacts in terms of lost HS. This is consistent with previous research 286 

showing that offset trades using only area-based metrics are unlikely to achieve no net loss, 287 

particularly without significant multipliers (Bull et al. 2016b; Sonter et al. 2019).  288 

Despite significant gains in HS, none of the metrics were consistently effective at offsetting 289 

development impacts on species’ populations (Fig 4). This case study is a simplified version of 290 

current offset procedures and we have only applied it to three species. Commonly, practitioners 291 

need to design offsets to provide benefits for multiple target species simultaneously. Here we only 292 

focused on single species outcomes, to keep comparisons between metrics as transparent as 293 

possible. However, these results are naturally further complicated when considering how metric 294 

choice could interplay with multiple species priorities (Whitehead et al. 2017). Our results highlight 295 

that, relying on vegetation condition, or even changes in HS for target species, as a measure of 296 

offset success, can be misleading. This was apparent in the vastly different outcomes we 297 
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observed between HS and EMA (Fig 3; Fig 4). Depending solely on HS could result in the false 298 

interpretation that offset actions are having long-term benefits for the target species. This could 299 

lead to exacerbated species declines and nudge species of least conservation concern towards 300 

a declining trajectory, even when every offset requirement is being met (Maron et al. 2015). This 301 

is also consistent with previous research demonstrating that restoration actions based on 302 

vegetation metrics alone do not effectively account for target species or populations (Cristescu et 303 

al. 2013; Hanford et al. 2016).  304 

We also demonstrate the difficulty in achieving no net loss at a landscape scale (Peterson et al. 305 

2018). Even when each individual offset action delivers a no net loss this may not result in a 306 

landscape level benefit for the species. All four of the metrics we tested failed to account for 307 

structural and functional changes in the landscape for all three species (Fig 5). Understanding 308 

how landscape structure and connectivity drive population trajectories is essential to evaluate the 309 

impacts caused by developments and offsets (Moilanen et al. 2005; Rubio et al. 2015). Whilst 310 

basic landscape metrics, such as patch size and distance, are usually incorporated into offset 311 

metrics (Gibbons et al. 2016), these still largely fail to capture development impacts on species 312 

or populations (Crouzeilles et al. 2015). Recent research has demonstrated the benefits of 313 

accounting for connectivity in the planning stage of offsets, at least in terms of achieving no net 314 

loss targets (Bergès et al. 2020). Here, we have quantified the potential consequences of not 315 

accounting for species-specific connectivity. Our results show that the negative impacts of using 316 

only habitat-based metrics may be significant, vary greatly between metrics, and most alarmingly, 317 

are likely to go unnoticed unless changes in population dynamics are explicitly tested. These 318 

findings provide strong support for earlier calls, that both structural (e.g. patch size and distance) 319 

and functional connectivity metrics (e.g. metapopulation connectivity and capacity; Bojkovic et al., 320 

2015; Moilanen et al., 2005) should be accounted for in early stages of impact assessment and 321 

offset planning to avoid unexpected declines in populations and species (Tarabon et al. 2019).  322 
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Exhaustive collection of data on ecology and demographic processes driving persistence is 323 

obviously not possible for all species (Birkeland & Knight-lenihan 2016). However, increased 324 

availability of abundance and demographic data may fill this information gap over time. Failing to 325 

capture complex processes which are involved in driving changes in population persistence at a 326 

landscape level is likely to exacerbate biodiversity declines, such as we observed here (Maron et 327 

al. 2016). Assessing species-specific metrics such as abundance or density, which are generally 328 

driven by ecosystem processes (Otto et al. 2014), alongside vegetation condition metrics, may 329 

better enable offsets to capture the key species and populations managers are aiming to protect 330 

(Mckenney & Kiesecker 2010; Schmeller et al. 2017). Inclusion of these data into offset 331 

approaches would likely improve offset outcomes for rarer, low density species with large home 332 

ranges, such as the powerful owl. Similarly, our use of HS information here, though largely 333 

ineffective at accounting for population persistence, did demonstrate benefits for delivering habitat 334 

gains in comparison to area or condition only metrics. This approach may be effective for species 335 

whose abundance is linearly correlated with habitat suitability. For example, the net gains in HS 336 

delivered using the ConditionXSDM metric resulted in some success for the squirrel glider 337 

populations so long as impacts were avoided where possible and ideally small (Fig 4).  338 

Recent shifts in policy requirements have promoted using HS information where possible and 339 

additional information on populations and abundance when required (Queensland Government 340 

2014). Our use of species-specific HS was an attempt to reflect rapidly changing offset policies 341 

and increased interest in incorporating more species-specific information into offset calculations 342 

(Moilanen & Kotiaho 2018). Although SDMs do not capture population level processes (Kujala et 343 

al. 2018), they do provide a more accurate description of HS than simple vegetation-based 344 

metrics (Guisan & Thuiller 2005). Data required to build SDMs is becoming more prevalent and 345 

are relatively easy to access and collate at large scales (Boykin et al. 2012). Use of SDMs within 346 

biodiversity offsetting may also provide developers with information necessary to avoid areas 347 
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where biodiversity impacts are likely to be significant (Houdet & Chikozho 2014). Moreover, SDMs 348 

can explicitly target restoration efforts towards areas where habitat gains will be largest 349 

(Whitehead et al. 2017).  350 

It is likely that there is no single way of overcoming the challenges associated with offsetting for 351 

every scenario and species. From this research we can make four key conclusions and 352 

recommend ways forward for offset policies. Firstly, and reinforcing earlier calls (Phalan et al. 353 

2017), avoidance of impacts through careful placement of new development is the most effective 354 

way of ensuring that species persistence is maintained for important species. Given challenges 355 

associated with increasing complexity in current offsetting metrics, and the fact that some 356 

developments are not offsetable, avoiding and minimizing negative development impacts where 357 

possible is essential. Secondly, when developments do impact areas of high suitability for 358 

species, it is essential that species, not only their suitable habitat, are explicitly accounted for in 359 

offsets. We observed very different conservation outcomes when comparing habitat gains and 360 

species persistence. Ensuring the metrics used to assign offsets accurately reflect the values we 361 

aim to conserve is crucial (Cristescu et al. 2013; Hanford et al. 2016). This is further dependent 362 

on policy frameworks under which an offset is required, highlighting the importance of explicitly 363 

stating biodiversity targets in the planning stage (Maron et al. 2018).  364 

Thirdly, whilst large offsets may have multiple benefits, this work demonstrates that more habitat 365 

does not necessarily translate into equal gains in persistence for all species. The implications of 366 

not accounting directly for species population dynamics and landscape structures may outweigh 367 

benefits delivered by producing large areas of suitable habitat (Figure 5). Where data is available, 368 

abundance and demographic variables should be included into offset calculations to ensure 369 

populations are tracked and development impacts on populations are accountable. Lastly, this 370 

work has demonstrated that benefits delivered by offsets are nuanced and species-specific. 371 

Therefore, impacts of metric choice should also be assessed for multiple species simultaneously 372 
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to determine how these metrics align with achieving several persistence targets. These 373 

improvements may go some way towards mitigating development impacts on biodiversity and 374 

ensuring long-term conservation benefits. 375 
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Figures 515 

Figure 1: Hunter Valley region, New South Wales, Australia. 516 

Figure 2: Simulation modelling framework conducted within R (steps 1 to 3) and RAMAS GIS 517 

(steps 4 and 5). The maps represent habitat suitability on a scale of 0 to 1 with yellow indicating 518 

unsuitable habitat and the blue indicating most suitable habitat. The green squares (steps 2 and 519 

3) represent grid cells in the landscape and their condition values.  Development sites are chosen 520 

(the red points; step 1) and then cleared (red circles; step 1). The impacts of each development 521 

are calculated both in terms of area and condition lost (step 2). Vegetation condition is restored 522 

until the requirement is met either in terms of area or condition (step3). Each resulting map, 523 

including development without offsets and developments with offsets, is used in RAMAS GIS to 524 

build a patch map using the resulting landscape structure and species dispersal parameters (step 525 

4). The patch map is then used in a spatially explicit population model which tracks abundance of 526 

the species through time (step 5).  527 
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Figure 3: Percentage change in Habitat Suitability (HS) from baseline (y-axis). Each column is a 528 

development scenario (S1: Large, Avoidance, S2: Large, targeted, S3: Small, Avoidance, and S4: 529 

Small, targeted) and each row is a species (squirrel glider, powerful owl and northern brown 530 

bandicoot). On the x-axis each metric is shown with confidence intervals (+/- SD) for each 531 

scenario, generated from 50 repetitions of each simulation. From left to right the first bar for each 532 

species (dark blue) represents the development impact, followed by Area only (blue), AreaXSDM 533 

(turquoise), Condition only (green), ConditionXSDM (yellow).  534 

 Figure 4: Percentage change in Estimated Minimum Abundance (EMA) from the species 535 

baseline. EMA (y-axis) was averaged across PVAS with the error bars demonstrating the variation 536 

in EMA produced by the simulation runs. Each column is a development scenario (S1: Large, 537 

Avoidance, S2: Large, targeted, S3: Small, Avoidance, and S4: Small, targeted) and each row is 538 

a species (squirrel glider, powerful owl and northern brown bandicoot). On the x-axis each metric 539 

is shown with confidence intervals (+/- SD) for each scenario, generated from 50 repetitions of 540 

each simulation. From left to right the first bar for each species (dark blue) represents the 541 

development impact, followed by Area only (blue), AreaXSDM (turquoise), Condition only (green), 542 

ConditionXSDM (yellow). Standard deviations are shown for each scenario, generated from 50 543 

repetitions of each simulation. 544 
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Figure 5: Comparison of the Estimated Minimum Abundance values (y-axis) to average number 545 

of patches (x-axis; top panel) and the average size of patches (x-axis; bottom panel). The shapes 546 

indicate the metrics and the colours indicate the scenario (S1-S4). The black square with a cross 547 

through the middle represents the baseline value for number of patches relative to EMA. The 548 

trend line is the relationship between EMA and number or size of the patches as a linear 549 

regression.550 

Figure 1: Hunter Valley region, New South Wales, Australia. 
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551 

Figure 2: Simulation modelling framework conducted within R (steps 1 to 3) and RAMAS GIS (steps 4 and 5). The maps represent habitat suitability 
on a scale of 0 to 1 with yellow indicating unsuitable habitat and the blue indicating most suitable habitat. The green squares (steps 2 and 3) represent 
grid cells in the landscape and their condition values.  Development sites are chosen (the red points; step 1) and then cleared (red circles; step 1). 
The impacts of each development are calculated both in terms of area and condition lost (step 2). Vegetation condition is restored using until the 
requirement is met either in terms of area or condition (step3). Each resulting map, including development without offsets and developments with 
offsets, is used in RAMAS GIS to build a patch map using the resulting landscape structure and species dispersal parameters (step 4). The patch map 
is then used in a spatially explicit population model which tracks abundance of the species through time (step 5).  
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552 

Figure 3: Percentage change in Habitat Suitability (HS) from baseline (y-axis). Each column is a development scenario (S1: Large, Avoidance, S2: 
Large, targeted, S3: Small, Avoidance, and S4: Small, targeted) and each row is a species (squirrel glider, powerful owl and northern brown 
bandicoot). On the x-axis each metric is shown with confidence intervals (+/- SD) for each scenario, generated from 50 repetitions of each simulation. 
From left to right the first bar for each species (dark blue) represents the development impact, followed by Area only (blue), AreaXSDM (turquoise), 
Condition only (green), ConditionXSDM (yellow).  
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553 

Figure 4: Percentage change in Estimated Minimum Abundance (EMA) from the species baseline. EMA (y-axis) was averaged across PVAS with the 
error bars demonstrating the variation in EMA produced by the simulation runs. Each column is a development scenario (S1: Large, Avoidance, S2: 
Large, targeted, S3: Small, Avoidance, and S4: Small, targeted) and each row is a species (squirrel glider, powerful owl and northern brown bandicoot). 
On the x-axis each metric is shown with confidence intervals (+/- SD) for each scenario, generated from 50 repetitions of each simulation. From left to 
right the first bar for each species (dark blue) represents the development impact, followed by Area only (blue), AreaXSDM (turquoise), Condition only 
(green), ConditionXSDM (yellow). Standard deviations are shown for each scenario, generated from 50 repetitions of each simulation. 
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554 

 Figure 5: Comparison of the Estimated Minimum Abundance values (y-axis) to average number of patches (x-axis; top panel) and the average size of 
patches (x-axis; bottom panel). The shapes indicate the metrics and the colours indicate the scenario (S1-S4). The black square with a cross through the 
middle represents the baseline value for number of patches relative to EMA. The trend line is the relationship between EMA and number or size of the 
patches as a linear regression. 
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