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 42 

Including Indigenous knowledge in species distribution modelling 43 

for increased ecological insights 44 

Abstract 45 

Indigenous knowledge systems hold detailed information on current and past environments 46 

that can inform ecological understanding as well as contemporary environmental 47 

management.  Despite its applicability, there are limited examples of Indigenous knowledge 48 

being incorporated in species distribution models, which are widely used in the ecological 49 

sciences. We describe a collaboratively designed project that applied a structured elicitation 50 

process and statistical framework to combine Indigenous knowledge with survey data to 51 

model the distribution of a threatened and culturally significant species (mankarr; greater 52 

bilby; Macrotis lagotis). We used Martu (Indigenous) occurrence knowledge and presence 53 

data from track-based surveys to create predictive species distribution models using the 54 

Maxent program. We found that predictions of species distribution using Indigenous 55 

knowledge suggested a broader distribution to those created with survey data and together the 56 

models implied potential local declines, which were supported by Martu observation. Both 57 

data types were influenced by sampling bias that appeared to influence model predictions and 58 

performance. Further ecological insights were provided by Martu knowledge of habitat 59 

associations, locations of decline, plus descriptions of the ecosystem dynamics and 60 

disturbance regimes that influence occupancy. We conclude that intercultural approaches that 61 

draw on multiple knowledges and information types can be beneficial for species distribution 62 

modelling, and for gaining understanding to manage threatened or culturally significant 63 

species. 64 

  65 
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Introduction 66 

Developing collaborative opportunities which combine the insights from Indigenous 67 

Knowledge (IK) and Western science to improve contemporary environmental management 68 

is a priority for many conservation organizations, governments and Indigenous people 69 

(Mistry & Berardi 2016). Central to this endeavour is the development of frameworks that 70 

facilitate coproduction by Indigenous and non-Indigenous partners, where Indigenous rights, 71 

values and socioeconomic realities are considered, and where IK and Indigenous priorities 72 

are applied (Hill et al. 2012). The knowledge systems of Indigenous people hold detailed 73 

information on the current and past environment, as well as the dynamics that shape the 74 

condition and diversity of the natural world (Agrawal 1995; Houde 2007). IK emerges from 75 

long periods of shared human observation and experimentation and contains intimate 76 

understanding of species distributions, animal behaviour, habitat relationships and the 77 

complex feedback loops between humans and nature (Agrawal 1995; Huntington 2000; 78 

Brennan et al. 2012).  Although there may be cultural differences in worldviews and 79 

priorities, Indigenous and non-Indigenous managers often have related questions and goals 80 

with regard to natural resource management (Lynch et al. 2010). 81 

 82 

The conservation and recovery of the mankarr (greater bilby/ Macrotis lagotis Reid, 1837) is 83 

of national significance in Australia (Bradley et al. 2015) and a priority for Martu, the 84 

Traditional Custodians of the Martu Native Title Determination Area in Western Australia 85 

(Jupp et al. 2015), and other Aboriginal Australians who are custodians of this species (Walsh 86 

& custodians of the Bilby 2016). The mankarr is the last of the extant desert bandicoots, once 87 

found across most of the interior of Australia, the species’ distribution has contracted to the 88 

north-western parts of its former range (which are largely Indigenous estates), and a 89 

continuing decline in distribution suggests populations are far from secure (Woinarski et al. 90 
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2014). It is one of many small mammal species that have experienced a precipitous decline 91 

over the last 100 years, as at least a third of all central desert mammals have become extinct 92 

(Woinarski et al. 2015). To the Indigenous people living in these deserts, these mammals 93 

form an integral part of culture and Jukurrpa (Dreaming/Law) and historically provided 94 

important sources of food (Burbidge et al. 1988; Walsh 2008). The knowledge of Indigenous 95 

people reveals crucial ecological insights into these extinct species, and establishes historical 96 

distributions and timelines of declines (Burbidge et al. 1988; Ziembicki et al. 2013).  97 

 98 

The recovery of the mankarr is challenged by limited understanding of its current extent of 99 

occurrence, its abundance, and location of suitable habitat (Cramer et al. 2016) across the 100 

remote and expansive Indigenous lands where extant populations chiefly occur. Species 101 

distribution models (SDMs) offer methods to identify environmental correlates of occurrence 102 

to predict species distribution (Guisan & Thuiller 2005; Elith & Leathwick 2009), and 103 

methods are being developed where IK or local knowledge can be applied in ecological 104 

modelling to fill survey gaps or provide novel insights (Bélisle et al. 2018).  However there 105 

are challenges to using IK in SDMs which include eliciting reliable knowledge (Kuhnert et 106 

al. 2010), developing methods to integrate different geographical data types (beyond the most 107 

commonly used point-level presences) in SDMs (Merow et al. 2017), and gaining an 108 

understanding of how the observation and cultural transmission process associated with IK 109 

may impact on predictions and interpretations (for instance Polfus et al. 2014).  110 

 111 

The aim of this study was to develop a modelling approach that incorporates Indigenous 112 

(Martu) knowledge (IK) of mankarr ecology and occurrence along with geo-referenced track-113 

based survey data to assist with understanding mankarr distribution in the Martu 114 

Determination. We elicited Martu knowledge of mankarr distribution and ecology through 115 
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semi-structured interviews, and applied this information in two ways: 1) building a model to 116 

predict spatial distribution, and 2) adding contextual understanding of the ecological 117 

processes that influence mankarr occurrence (Fig. 1). We present probabilistic maps of 118 

mankarr occurrence and test whether data from SDMs incorporating IK or presence data 119 

generate similar predictions. We consider the contributions of both IK and survey data in 120 

understanding distribution patterns and in assisting management and recovery planning.  121 

 122 

FIGURE 1 near here 123 

 124 

Methods  125 

Background and study area 126 

The study area comprised the 13.6 million hectare Martu Native Title Determination Area in 127 

Western Australia.  Martu is used as a self-reference for a set of Aboriginal Australian dialect 128 

groups whose traditional estates encompass parts of the Great Sandy, Little Sandy and 129 

Gibson Deserts including the Karlamilyi River and Percival Lakes (Fig. 2). Martu are seeking 130 

ways to incorporate new technologies to achieve their priorities for caring for Country and 131 

culture (Jupp et al. 2015).  132 

 133 

Elicitation of Indigenous knowledge  134 

The knowledges of Aboriginal Australians in the deserts is complex and holistic; including 135 

major domains of Country, People and the Law (Walsh et al. 2013). Here we focused on 136 

gaining a sample of open information that could be used for mapping and natural resource 137 

management. We conducted elicitations in Parnngurr and Punmu communities in 2016 with 138 

ten Martu who were identified by the community as holding knowledge on mankarr and 139 

country, endorsed to speak on these topics and willing to participate. The interview process 140 

was developed in collaboration between the authors, Martu and staff at Kanyirninpa Jukurrpa 141 
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(KJ; a Martu organisation), who provided guidance in making interviews respectful and 142 

culturally appropriate. Martu interviewees requested to participate in self-designated family 143 

groups rather than individually (6 independent groups with 1-3 people), with younger family 144 

members often present to help with translation and thereby add knowledge. Prior to seeking 145 

consent, we discussed the purpose of data collection, and how the data would be stored and 146 

used. 147 

 148 

FIGURE 2 near here 149 

 150 

Interviews were conducted in a semi-structured manner, with open-ended questions to 151 

encourage discussion (Table 1). We had photos of animals (including their tracks, scats and 152 

other sign) to aid with identification. A mixture of English and Martu languages were used. 153 

Groups were seated around large maps (AO size), which were annotated with spatial 154 

information as discussions progressed. We sought three types of information: 1) spatial data 155 

indicating where mankarr are likely to be present, 2) indications of whether distribution has 156 

been changing, and 3) information on habitat suitability (Table 1). The interviewees provided 157 

spatial information by drawing polygons around areas where mankarr activity was known. 158 

For each polygon we recorded when mankarr were last considered to be active there. Elders 159 

elected to only provide spatial information for their specific family lands, and we were unable 160 

to elicit information on areas that the mankarr is absent, as interviewees could only speak of 161 

the location where they knew of mankarr encounters.  162 

 163 

TABLE 1 near here 164 

 165 

Preparation of spatial IK for analysis 166 
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We digitized the hand-drawn maps using ArcMap 10.2 (Esri) to create spatial polygons of 167 

Martu knowledge of mankarr occurrence. One Elder was uncertain about the map placement 168 

of two locations where sign was witnessed several decades before, and we decided not to 169 

include these areas in the analysis to reduce the potential for false positives. As the combined 170 

knowledge from Elders covered only a subsection of the Native Title Area, we decided to 171 

constrain model parameterization to the area that encapsulated the IK, which we call the “IK 172 

boundary” (Lat: 121.82 to 123.87, Lon: -23.44 to -21.51; Fig. 2). We recognize that mankarr 173 

(and IK) occur on other Martu family lands (and other Indigenous lands), and that SDMs 174 

could be applied to extrapolate to these lands.  175 

   176 

Survey data 177 

Records of mankarr presence are also provided by surveys carried out by KJ ranger teams for 178 

arid fauna between 2008 and 2015. Surveys were conducted by searching a 2ha area for signs 179 

(including tracks, scats, diggings and burrows) to indicate the recent presence of animal 180 

species including mankarr (following methods of Moseby et al. 2012). We screened the data 181 

and removed two presence points that appeared to be erroneous, leaving 144 presences. The 182 

survey work did not have a strict sampling framework; some sites were visited once, while 183 

others had multiple surveys, and at times a series of surveys were located within 1km of 184 

others. We therefore designated presence at the scale of the 1km environmental layers, where 185 

the centre of any cell that had one (or more) mankarr detections was included as a presence 186 

point, resulting in 93 presence points.  187 

 188 

Environmental variables 189 

A set of 10 environmental variables were chosen as potential predictors of mankarr 190 

distribution (Table 2). Mankarr distribution is reliant suitable substrate for burrowing 191 
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(Moseby & Donnell 2003), so to characterize substrate at a scale relevant to mankarr, we 192 

used polygon-based regolith data to create a separate raster layer (1km resolution) for each 193 

regolith type (sand, lacustrine, exposed rock, alluvium and calcrete) which depicted the 194 

percentage cover of this substrate within a 2km radius of each raster cell. Maps of vegetation 195 

pre-European settlement (Geoscience Australia) were collapsed from 26 categories into seven 196 

broad vegetation classes (Supporting information).  We did not include climate variables (i.e. 197 

maximum temperature, precipitation) because the study area has extremely poor coverage by 198 

weather stations. We could not include radiometric data (relative potassium, thorium and 199 

uranium), which is a predictor of other arid vertebrate species occurrence, due to gaps in 200 

coverage (Pert & Norton 2011). Salt lakes were removed from consideration in analyses as 201 

they are unsuitable. All data preparation and analyses were undertaken in R (version x64 202 

3.2.4) unless specified. 203 

 204 

The continuous candidate environmental predictors (Table 2) were assessed for co-linearity 205 

with tests of Pearson correlation coefficients. There was strong pairwise correlation between 206 

three predictors (roughness & relief 0.97; roughness & rock 0.7; relief and rock 0.65). We 207 

retained relief and exposed rock because they may directly limit habitat suitability for the 208 

mankarr which is a burrowing animal, so we considered them proximal predictors of mankarr 209 

habitat suitability (sensu Austin 2002). After correlation analysis and screening, we arrived at 210 

a final set of 9 environmental predictors. 211 

 212 

TABLE 2 near here 213 

 214 

Considering sampling bias 215 
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As the study area is remote with few roads, records (both survey and IK) may be biased 216 

towards areas that are more accessible, which may lead to problems in estimation of 217 

environmental relationships if observer bias is aligned with a biased sampling of 218 

environmental conditions (Merow et al. 2013; Fourcade et al. 2014). In our case, we did not 219 

know observer bias a priori, and there was limited survey effort or data for taxonomically 220 

related species to infer sampling probability across the landscape for modelling bias. We 221 

therefore used a model-based method (following Warton et al. 2013) where distance to roads 222 

(km) was used as a covariate to model sampling bias in both survey and IK models, as both 223 

may be biased to the roads which are > 20 - 30 years old. Bias was corrected for prior to 224 

model prediction (see below). Pearson correlation coefficients between distance to roads and 225 

environmental variables were all R < 0.2. 226 

 227 

Generating models 228 

As the IK we elicited consisted of polygons of species presence (no absence data), and our 229 

aim was to predict geographic distribution of the mankarr, we decided to generate SDMs 230 

using Maxent 3.4.1 (Steven J. Phillips et al. 2018) as implemented in dismo (1.1.4; Hijmans 231 

et al. 2017). Maxent uses machine learning methods to estimate species habitat preferences 232 

by comparing the environmental conditions where a species was detected with the frequency 233 

of these conditions in the landscape, thereby providing an estimate of relative likelihood of 234 

occurrence (Elith et al. 2011).  235 

 236 

Before commencing modelling, we needed to generate point data from the IK polygon data. 237 

We did this by sampling random points (using 'spsample' in the sp 1.2-6 package; Pebesma & 238 

Bivand 2005) within the IK polygons. Our default approach was to use the same total number 239 

of randomly generated IK points as we had survey data (~100). However, to ensure that this 240 
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provided a reasonable representation of the IK, we generated models using four replicate data 241 

sets with sample sizes ranging from 100 to 2000 points (at increments of 100). Maxent was 242 

set to include only linear, quadratic and product features, with regularization set to 1 and 243 

duplicate points within 1km scale of environmental predictors removed. For each sample 244 

size, we checked for model performance and stability in the importance of environmental 245 

predictors in the model output between replicates and sample sizes. This allowed us to 246 

ascertain the minimum sample size at which model fits did not change appreciably between 247 

sample replicates. At a sample size of approximately 1000, the variables selected by Maxent 248 

as highly important and their functional forms became broadly consistent (Supporting 249 

information).  We used this sample size for all ensuing model analysis.  250 

 251 

Evaluating model performance  252 

We ran two Maxent models which used: 1) IK, and 2) survey data. We first generated 253 

separate 10 folds sets of the data sets for model evaluation. We used BlockCV (Valavi et al. 254 

2018) to assess the effective range of spatial autocorrelation in the environmental predictors, 255 

and then used the median of the spatial autocorrelation ranges (21 km) as the block size for 256 

creating spatially separated testing and training folds for model evaluation. Both occurrences 257 

and background localities were assigned to each of the 10 bins, with the intention to reduce 258 

spatial-autocorrelation between testing and training points, which if present, can overinflate 259 

model performance (Hijmans 2012; Roberts et al. 2017).  260 

 261 

We used ENMeval (Muscarella et al. 2014) to run successive Maxent models using different 262 

combinations of parameters to select the settings that optimize the trade-off between 263 

goodness-of-fit and overfitting for each data source, and carry out cross-validation with 9 264 

bins for training and the withheld bin for testing. We created a suite of models with the 265 
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following feature classes:  linear, linear + quadratic, linear + quadratic + product. For each 266 

feature class combination, we built models across a range of regularization multipliers (0.5 – 267 

4 with 0.5 steps), resulting in a suite of 24 models for each data type. All models used the 268 

same sample of 10 000 random background points. We retained the model with the lowest 269 

corrected Akaike Information Criterion (Burnham & Anderson 2002). Models were evaluated 270 

using Area Under the Receiver Operating Curve (AUC), where a score of 0.5 indicates 271 

randomness, whilst a ranking of 1.0 indicates perfect model performance.  For Maxent 272 

presence-background models, AUC quantifies the probability that the model correctly ranks a 273 

random presence locality higher than a random background pixel (Phillips et al. 2006). We 274 

also recorded the 10% omission rate which provides a measure of overfitting (Muscarella et 275 

al. 2014).  276 

 277 

Model predictions  278 

We created predictive maps of mankarr distribution for the two models using ‘predict’ in the 279 

raster package with the cloglog transformation (Hijmans 2017). To correct for observer bias, 280 

we made predictions with distances from roads conditioned on a common level of at all 281 

locations, giving predictions an interpretation as the relative likelihood of observing the 282 

species if all places had the same accessibility (Warton et al. 2013).  283 

 284 

Results 285 

Martu knowledge of mankarr occurrence 286 

Elders had knowledge of mankarr occurrence from a > 50 year period, including when Martu 287 

were living traditional lifestyles prior to contact with non-Indigenous people until the present 288 

day. This knowledge was obtained by interviewees through a combination of direct 289 

experience, shared information (between Martu, other Indigenous groups, and ecologists), 290 
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and childhood tutelage by Elders and parents. In total, 39 polygons with mankarr occurrence 291 

were designated (ranging from 2.8 km2 - 504 km2; mean 89 km2; total 3500 km2). As Elders 292 

elected to only provide spatial information for their specific family lands, we had little spatial 293 

overlap between interviewees groups, and could not undertake verification procedures as 294 

used elsewhere (for instance Zhang & Vincent 2017), although congruence between track-295 

based surveys and data provided by Elders could be assessed. Areas where mankarr were 296 

encountered were clustered around Punmu and Parnngurr communities (where interviewees 297 

were based). The IK boundary we drew to encapsulate the areas Martu spoke for was 298 

approximately 45 000 km2 (28 % of the Martu Determination; Fig. 2), of this 7.8 % was 299 

designated by Elders as places where mankarr sign had been observed. Of the IK polygons, 300 

25 (of 39) had track-based surveys located within them. In total 47 % of surveyed mankarr 301 

detections fell within IK polygons.  302 

 303 

Habitat knowledge 304 

Mankarr were described as most likely to be found in six types of habitat: verges of salt lakes, 305 

mulga, laterite, sandplain, claypan and dune fields. Martu described suitable habitat as having 306 

the correct soil properties for burrow formation with low numbers of feral predators (foxes 307 

and cats), and detailed the right combination of fire and rain to make food resources available 308 

depending on habitat. Martu fire practices, which create a patchy mosaic of seral stages and 309 

old growth vegetation, were indicated as important to maintain habitat suitability. All 310 

interviewees from Parnngurr (N = 5) reported local declines, suggesting the species was less 311 

common and had restricted distribution in the last decades. Punmu Elders described that 312 

mankarr shift distribution with environmental conditions (N = 3/5), and that mankarr usually 313 

return to areas when the fire regimes and predator pressure improve. Elders suggested that 314 

patterns of regional and local declines were influenced by Martu movement off their lands in 315 
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the 1960s with the associated cessation of traditional practices and ceremonies, resulting 316 

changes in land management practices, rainfall and compounded by introduced predators.  317 

 318 

Importance of environmental predictors in models 319 

The importance of predictors within Maxent models changed depending on the data source 320 

used (Fig. 3). Biased sampling towards roads was evident in all models, however roads had 321 

the strongest permutation importance in the survey model (80.4), compared with the IK 322 

(22.5) and joint (25.8) models. In the IK model the predictors with the highest permutation 323 

importance were lacustrine (16.8), sand (13.9), alluvium (12.8), calcrete (12) followed by 324 

roughness (7.4). In the model fitted to the survey data, the environmental predictors had small 325 

importance once the road bias was included, the highest permutation importance was 326 

lacustrine (4.7) followed by elevation (4.5). As distance to roads was an important predictor 327 

in all models this supported the need to correct for bias in sampling.  328 

 329 

TABLE 3 near here 330 

FIGURE 3 near here 331 

 332 

Model performance 333 

The survey model had a higher test AUC (0.85) compared with the IK (AUC = 0.7) and joint 334 

(AUC = 0.74) models (Table 3). However, the 10% high omission rate of the survey model 335 

(0.34; Table 3) suggests this model is overfitting at a higher rate than the IK (10%OR = 0.18) 336 

model (Table 3). The predictive maps of mankarr habitat suitability differed between the data 337 

types (Fig. 3). The IK model suggested that suitable areas are found in diffuse patches across 338 

much of the study area, in particular the country surrounding salt lakes and where there is 339 

sandy substrate. In comparison the survey model predicts suitable habitat is largely restricted 340 
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to the vicinity of salt lakes in the central north. Both the IK and survey models suggest the 341 

rocky ranges to the west provide lower habitat suitability. 342 

 343 

Discussion 344 

Our study applies Martu Indigenous knowledge and western science to model the distribution 345 

of the mankarr, and considers the broader ecological knowledge elicited from Martu to gain a 346 

fuller understanding of the distribution and ecology of this threatened and culturally 347 

important species. By comparing the insights from the IK and survey data models, we 348 

develop understanding of the limits and strengths of the two approaches and gain a more 349 

holistic understanding of what drives and limits mankarr distribution. Our findings emphasize 350 

the importance of understanding the context and observational process underlying IK and 351 

other data sources to interpret the predictions produced by SDMs based on either IK or 352 

biological surveys.  353 

 354 

Modelling mankarr distribution 355 

In our study, both the IK and survey data models suggested that the highest relative habitat 356 

suitability for mankarr was associated with lacustrine landforms (relating to lakes - in this 357 

case salt-lakes and paleo-drainages). However, the IK model suggested a broader habitat 358 

suitability extending to sandy, alluvium (clay), and calcrete substrates (Fig. 3). As the two 359 

models are based on data from differing observational processes (Fig. 1), and AUC cannot be 360 

used for comparison of models using different test data (Elith et al. 2011), it is challenging to 361 

ascertain whether one model is closer to the truth. However, the differing insights offered by 362 

the two models, along with additional ecological context, can help us to piece together a 363 

fuller understanding of mankarr distribution. 364 

 365 
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The differences in the models may signal evidence of a shift in local relative habitat 366 

suitability for the mankarr over the past decades, which was described by Martu and other 367 

studies from deserts to the east (Southgate et al. 2007). IK data contained locations of 368 

mankarr distribution over a long temporal scale (> 50 years vs 8 years of survey) and 369 

included polygons for areas where Martu assume the species has locally declined based on 370 

lack of recent observations. From Martu descriptions, these areas of local decline are mainly 371 

in sand plain country where populations are low density and transient due to disturbance, and 372 

that populations near salt-lakes tend to be more resident and are easier to detect. The same 373 

pattern has been found to the east where mankarr have become increasingly restricted in 374 

occurrence to residual and fluvial landforms and less prevalent on the sand plains or dune 375 

fields (Southgate et al. 2007).  376 

 377 

It is important to consider how the observation and cultural transmission process associated 378 

with IK may impact on predictions and interpretations (Fig 1). Martu observation of 379 

distribution seemed to be related to species behaviour: the polygons for populations near salt-380 

lakes were smaller and more precise, while polygons in sand plain country encompassed 381 

larger areas signalling the mobile nature of the species (Fig. 2). This bias towards larger 382 

polygons in sand plain country would result in an overestimate of the relative importance of 383 

those environmental conditions (Guillera‐Arroita et al. 2015). These larger polygons may 384 

also include more false presences at the modelling scale, making it harder for the model to 385 

distinguish presences from background. On the other hand, there is likely to be shared 386 

community knowledge of where mankarr reliably occur, and at least a subset of the surveys 387 

were directed to places where Martu knew that mankarr were present and easy to detect (i.e. 388 

salt-lakes and fluvial landforms), suggesting the survey data may overestimate the importance 389 

of salt-lakes, thereby enhancing model differences. Ascertaining the current status of mankarr 390 
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ultimately needs further monitoring effort to investigate the impact of landform, fire and food 391 

resources on mankarr occupancy and detectability, with attention to differences between 392 

sandplain and salt-lake country as suggested by the SDMs and IK.  393 

 394 

Incorporating IK in SDMs 395 

There are multiple reasons to incorporate IK into SDMs, including access to unique insights 396 

such as understanding of habitat associations that are overlooked by other data sources 397 

(Polfus et al. 2014), or observations that pre-date scientific exploration (Burbidge et al. 398 

1988). In co-designed or participatory Indigenous projects, inclusion of IK can make research 399 

more relevant, establish equality between knowledges (Koster et al. 2012), and support the 400 

maintenance and conservation of language and culture (Wilder et al. 2016). To apply IK 401 

ethically requires collaborative partnerships that give time to relationship building, respect 402 

Indigenous priorities, are conscious of Indigenous culture and protect intellectual property 403 

(Huntington 2000). IK should be applied within SDMs based on its validity within the 404 

constraints and context of the modelling objective, plus the difference it makes to the quality 405 

of the research, effectiveness of management or the involvement of the resource users in the 406 

decisions that affect them.  407 

 408 

There will be no one SDM technique that will be optimal for all IK models, but will depend 409 

on the research question and application (Elith & Graham 2009). There may be opportunities 410 

to incorporate IK in SDM methods that use local spatial knowledge, such as guidance in the 411 

collection of GPS presences points for wildlife (Luizza et al. 2016; Evangelista et al. 2018), 412 

local knowledge of species distribution patterns (Zhang & Vincent 2017), and application of 413 

expert understanding of species range boundaries to constrain the predictions of a SDMs that 414 

are parameterized with point occurrence records (Merow et al. 2017). There are also 415 
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opportunities for non-spatial IK to contribute to ecological modelling that incorporates expert 416 

knowledge, such as guiding data cleaning, approximation of distributions and model 417 

validation (Calixto-Pérez et al. 2018), or in construction of habitat suitability indexes (Polfus 418 

et al. 2014; Tendeng et al. 2016), or Bayesian models (Kuhnert et al. 2010). These methods 419 

are dependent on multiple experts providing qualitative or quantitative scores to represent the 420 

importance of environmental attributes to a focal species (Johnson et al. 2012). In some 421 

cross-cultural contexts where there are language barriers and varied literacy and numeracy 422 

skills, it could be challenging to elicit some of the common metrics used in HSIs or Bayesian 423 

ecological metrics – such as probability, frequency, quantity or weighting/rank (Kuhnert et al. 424 

2010). In all cases, care must be taken in the elicitation process to be culturally sensitive and 425 

avoid misinterpretations. There are frameworks to assist with transparent and repeatable data 426 

elicitation (Johnson et al. 2012; Martin et al. 2012), and methods for validation if required 427 

(Gratani et al. 2011). 428 

 429 

We conclude that an intercultural approach to eliciting and modelling with IK can provide an 430 

important role in understanding species distribution on Indigenous lands. Our results add to 431 

examples that Indigenous knowledge and perspectives can provide its own source of 432 

ecological insights that improves the impact of research (Ban et al. 2018). Collaborations that 433 

combine multiple knowledges may play an increasing role in enhancing our capacity to have 434 

a more holistic understanding of ecology (Ens et al. 2015), improve recovery planning, and 435 

ultimately halt the loss of biodiversity and cultural knowledge (Wilder et al. 2016). 436 

 437 

 438 

 439 
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Appendix S1 is available online. The authors are solely responsible for the content and 441 

functionality of these materials. Queries (other than absence of the material) should be 442 

directed to the corresponding author. 443 
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Tables 600 

Table 1. Lines of questioning that were attempted to elicit knowledge of mankarr, with 601 

example questions shown in italic.  602 

1. Establish the geographic region participants know. 

Where is your country, and country you know well? 

2a) Identify areas of suitable habitat 

Where do mankarr live on Martu country? 

Where have you seen mankarr? 

 

3a) Identify areas of unsuitable habitat 

Where are places mankarr do not live? 

Where are places mankarr is not found? 

2b) Whether distribution has changed  

When did you see mankarr there? 

Are mankarr still there today? 

No? When was mankarr last there? 

 

3b) Whether distribution has changed  

Did mankarr ever live there? 

 

2c) Population size/habitat suitability 

How often did you see mankarr there? 

How many mankarr were living there? 

 

 

2d) Environmental factors 

What makes this place "good" for mankarr? 

 

3c) Environmental factors 

Why don't mankarr live in this place? 

 

* Questions relating to identifying unsuitable habitat were unsuccessful in gaining responses 603 

and discontinued. 604 

 605 
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Table 2. Environmental predictors used in models of mankarr occurrence. 606 

Variables Description Source 

Type 

Source Native 

resolution 

Modification 

Elevation Geodata 9 

Second DEM  

Continuous GeoScience 

Australia 

250 m Aggregated 

mean at 1km 

Roughness Coefficient 

of variation 

in elevation  

Continuous ANUCLIM 1km - 

Relief Elevation 

range within 

grid cell 

 Continuous ANUCLIM 1km - 

Fertility Index of 

inherent rock 

fertility 

Continuous GeoScience 

Australia 

1km - 

Sand Regolith 

category  

Categorical Geoscience 

Australia 

1km % sand in 

2km radius  

Lacustrine Regolith 

category,  

Categorical GeoScience 

Australia 

1km % lacustrine 

in 2km radius  

Rock Regolith 

category  

Categorical Geoscience 

Australia 

1km % exposed 

rock in 2km 

radius  

Alluvium Regolith 

category 

 

Categorical Geoscience 

Australia 

1km % alluvium 

in 2km radius 

Calcrete Regolith 

category  

Categorical Geoscience 

Australia 

1km % calcrete in 

2km radius  

Vegetation Major groups 

of pre-

European 

vegetation  

Categorical Geoscience 

Australia 

1km Aggregation  

 607 

  608 
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Table 3. Model parameterization and performance evaluation of the final models for each 609 

data source. 610 

Model Features 

* 

Regularization 

multiplier 

Training 

AUC 

 Average 

test AUC  

Variation 

test AUC 

10% 

omission 

rate 

IK LPQ 0.5 0.79 0.70 0.08 0.18 

Survey LQ 0.5 0.92 0.85 0.08 0.34 

       

* L = linear, P = product, Q = quadratic 611 
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Figures 613 

Figure 1. Species distribution modelling incorporating observation data arising from western 614 

science and Indigenous methodologies. Western science detection data is derived from 615 

surveys at defined locations with observation influenced by the characteristics of the survey 616 

design. Indigenous knowledge of species occurrence (e.g. presences, distributions, ranges, 617 

habitat suitability) is developed as part of the biocultural knowledge of a place-based culture 618 

that can be connected to caring for country practices. The SDM describes the distribution of 619 

the species as a function of the observation pattern and environmental covariates and should 620 

be constructed based on the data available and modelling objectives. Building on Guillera-621 

Arroita (2017). 622 

 623 

Figure 2. The Martu Determination with the location of IK polygons of mankarr occurrence. 624 

The geographic bound of Elders’ knowledge captures the area that interviewees from Punmu 625 

and Parnngurr communities spoke about. These communities sit in the Karlamilyi National 626 

Park, which is excised from the Martu Determination along with small areas under mining 627 

tenure, but are recognized by Martu as their traditional lands. 628 

 629 

Figure 3. Comparison of predictive maps and importance of environmental variables to 630 

forming the Maxent models of mankarr occurrence within the geographic bounds of Elder 631 

knowledge. a) Maps plotted on cloglog scale where predictions are conditioned on a uniform 632 

value of road bias across the landscape; b) the permutation importance of the environmental 633 

variables and distance to roads which was used to model sampling bias.  634 

 635 

  636 
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 637 

Figure 1. Species distribution modelling incorporating observation data arising from western 638 

science and Indigenous methodologies. Western science detection data is derived from 639 

surveys at defined locations with observation influenced by the characteristics of the survey 640 

design. Indigenous knowledge of species occurrence (e.g. presences, distributions, ranges, 641 

habitat suitability) is developed as part of the biocultural knowledge of a place-based culture 642 

that can be connected to caring for country practices. The SDM describes the distribution of 643 

the species as a function of the observation pattern and environmental covariates and should 644 

be constructed based on the data available and modelling objectives. Building on Guillera-645 

Arroita (2017). 646 
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 648 

Figure 2. The Martu Determination with the location of IK polygons of mankarr occurrence 649 

and salt-lakes in light grey. The geographic bound of Elders’ knowledge captures the area 650 

that interviewees from Punmu and Parnngurr communities spoke about. These communities 651 

sit in the Karlamilyi National Park, which is excised from the Martu Determination along 652 

with small areas under mining tenure but are recognized by Martu as their traditional lands. 653 
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 655 

 656 

Figure 3. Comparison of predictive maps and importance of environmental variables to 657 

forming the Maxent models of mankarr occurrence within the geographic bounds of Elder 658 

knowledge. a) Maps plotted on cloglog scale where predictions are conditioned on a uniform 659 

value of road bias across the landscape; b) the permutation importance of the environmental 660 

variables and distance to roads which was used to model sampling bias.  661 
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