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52 Abstract

53 Knowing where species occur is fundamental to many ecological and environmental 

54 applications. Species distribution models (SDMs) are typically based on correlations between 

55 species occurrence data and environmental predictors, with ecological processes captured 

56 only implicitly. However, there is a growing interest in approaches that explicitly model 

57 processes such as physiology, dispersal, demography, and biotic interactions. These models 

58 are believed to offer more robust predictions, particularly when extrapolating to novel 

59 conditions. Many process-explicit approaches are now available, but it is not clear how we 

60 can best draw on this expanded modelling toolbox to address ecological problems and inform 

61 management decisions. Here, we review a range of process-explicit models to determine their 

62 strengths and limitations, as well as their current use. Focusing on four common applications 

63 of SDMs – regulatory planning, extinction risk, climate refugia and invasive species – we 

64 then explore which models best meet management needs. We identify barriers to more 

65 widespread and effective use of process-explicit models and outline how these might be 
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66 overcome.  As well as technical and data challenges, there is a pressing need for more 

67 thorough evaluation of model predictions to guide investment in method development and 

68 ensure the promise of these new approaches is fully realised. 

69 Introduction

70 Understanding and projecting species’ distributions is central to ecology, evolution, and 

71 conservation science (Holt 2003; Guisan et al. 2013; Sutherland et al. 2013). The simplest 

72 way to infer where a species might be now or in the future is to correlate observed 

73 occurrences to variables that may limit or promote persistence (e.g., climate, resource 

74 availability). Predictions of how those variables are likely to change (e.g., under climate 

75 change, land use changes or the establishment of protected areas) are then used to predict 

76 future species’ ranges (Araújo et al. 2005; Lütolf et al. 2008). These correlative species 

77 distribution models (SDMs) implicitly include the mechanisms that affect observations but do 

78 not explicitly model the processes that drive population dynamics or organismal responses to 

79 the environment (Elith & Leathwick 2009). While correlative models have been widely 

80 applied, there is growing recognition of their limitations, particularly when predicting to new 

81 environments (Box 1). 

82 Ultimately, the presence or absence of a species at a given location and time is the 

83 consequence of demographic processes: births, deaths and migration, which emerge from the 

84 interaction between an organism’s physiological, morphological and behavioural traits and its 

85 environment. In the last decade many have argued for explicit consideration of demographic 

86 and physiological processes when predicting species’ ranges (Kearney & Porter 2009; 

87 Thuiller et al. 2013; Ehrlén & Morris 2015; Urban et al. 2016), resulting in a diverse range of 

88 approaches often called process-based models (hereafter, process-explicit models). These 

89 include occupancy dynamics models (Kéry et al. 2013), abundance dynamics models (Schurr 

90 et al. 2012), demographic distribution models (Merow et al. 2014), eco-physiological models 

91 (Kearney & Porter 2009), and coupled SDM-population approaches (Keith et al. 2008) (Fig. 

92 1). By quantifying the biotic or abiotic mechanisms that drive populations, process-explicit 

93 models are, at least in principle, expected to forecast range dynamics (i.e. distribution and 

94 abundance across space and time) more accurately than correlative models (Evans et al. 

95 2016). However, proposed process-explicit methods differ in their characterisations of 

96 species’ demography and environmental effects, and all have identifiable limitations. Further, 

97 although process-explicit models are increasingly common, data needs and technical 

98 accessibility present substantial barriers. There is a need to identify the strengths and 
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99 weaknesses of different approaches so that they can be used effectively in ecological and 

100 management applications in changing climatic and environmental conditions.

101 Here, we address two interrelated questions that hamper more effective use of process-

102 explicit models for conservation and management. First, how do we choose the most relevant 

103 modelling framework (see Fig. 1) and the most appropriate implementation, for a particular 

104 application? For this, we compare different process-explicit models by focusing on four 

105 common objectives when predicting range dynamics: i) predicting ranges to inform planning 

106 and regulation, ii) predicting extinction risk to evaluate and prioritize conservation and 

107 recovery actions, iii) identifying climate refugia for threatened species, iv) determining the 

108 risk of invasive species establishing and spreading in novel environments. Second, we ask: 

109 what are the key barriers that prevent wider use of process-explicit models of species’ 

110 ranges, and how might these be overcome? These two issues of promise and barriers are not 

111 independent: matching different modelling approaches to specific applications will help to 

112 identify and overcome barriers to use. Throughout, our discussion is underpinned by a 

113 quantitative literature review (See Appendix S1 in Supporting Information).

114

115 Types of process-explicit models and their application to predicting range dynamics

116 Most process-explicit models of range dynamics draw heavily on population modelling (Box 

117 2). Typically, process-explicit modelling involves two steps: (1) characterising relevant 

118 processes, generally by estimating parameters from data, and (2) projecting or simulating 

119 species’ range dynamics based on these characterised processes (Fig. 2). We focus on six key 

120 classes of process-explicit models and how they are used to predict individual species’ range 

121 dynamics over relatively broad (regional to continental) spatial scales. These classes are 

122 defined based on the types of data used and how these data are combined to characterise key 

123 processes (Box 3). Methods differ in the processes included, how these depend on the 

124 environment, and the biological level (individual, population, or species) at which they are 

125 characterised (Fig. 1). Recognizing that this is an imperfect taxonomy, we describe exemplars 

126 of each model class, and use these to illustrate strengths and limitations of each class (Box 3; 

127 see Appendix S2 for additional descriptions of model classes).   

128 In describing process-explicit methods, we focus on population models commonly used in 

129 each model class but acknowledge that alternatives exist (Box 2). We include one such 

130 alternative, individual-based models (IBMs), to highlight situations in which a focus on 
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131 individuals is likely to be beneficial. In contrast to the other methods considered, we group 

132 IBMs based on how they simulate range dynamics (Fig. 2) rather than on how key processes 

133 are characterised (typical inputs, outputs and key steps: Fig. 1).

134 To identify current uses of process-explicit models of range dynamics we conducted a 

135 literature review using terms relating to each method class in combination with terms relating 

136 to range dynamics. We analysed a subset of the returned papers (n = 650) and used relevant 

137 papers (n = 121) to identify the ecological and management problems and taxonomic groups 

138 models have been applied to, and how they were parameterised and tested (Appendix S1). 

139 Key patterns in model use are highlighted in the model description sections, and results 

140 inform subsequent discussions.

141

142 Occupancy dynamics models (also known as species patch occupancy models; SPOMs): 

143 Despite frequent use at landscape scales and for inference, occupancy dynamics models have 

144 not been widely used to model range dynamics at broad (e.g. continental) spatial scales 

145 (although see Bled et al. 2011; Garcia-Valdes et al. 2013). In the studies we reviewed, 

146 occupancy dynamics models were most commonly applied to bird species (Fig. 3a), likely 

147 due to the availability of bird atlas data. Kéry and colleagues (2013) used the European 

148 crossbill in Switzerland to illustrate the value of occupancy dynamics models for predicting 

149 range dynamics. Detection/non-detection data from multiple sites in multiple years were used 

150 to model local extinction and colonisation probabilities as a function of environmental 

151 covariates, while repeat surveys within each season were used to model detection (i.e. the 

152 probability that the species was detected at a site when present). Accounting for imperfect 

153 detection (optional in these models) can improve the accuracy of range dynamics predictions 

154 (Kéry et al. 2013; Lahoz-Monfort et al. 2014) but requires data informative about the 

155 detection process (Guillera-Arroita 2017). Occupancy dynamics models can explicitly model 

156 colonisation and extinction probabilities as functions of environmental and spatial factors, 

157 accounting for spatial dependence in these processes. These models should therefore provide 

158 more reliable estimates of range dynamics (particularly for invasive or range-shifting species) 

159 than static correlative SDMs, which assume that species are at equilibrium and typically do 

160 not adequately account for dispersal constraints (Bled et al. 2011; Yackulic et al. 2015). 

161 However, occupancy dynamics models may be unreliable when relationships between 

162 colonisation, extinction and the environment are extrapolated to novel environmental 
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163 conditions. They also do not model abundance, which is often of most interest to managers of 

164 threatened and invasive species. 

165

166 Abundance dynamics models (including dynamic range models, DRM): Abundance 

167 dynamics models are yet to be widely applied to range dynamics (Fig. 3) but are included 

168 here due to their links to inverse models of demographic parameters, which allow estimates 

169 of demographic processes in the absence of individual-level demographic data, and show 

170 promise for simulating range dynamics (Schurr et al. 2012; González et al. 2016). Cabral and 

171 Schurr (2010) used this method to simulate local population dynamics, dispersal, and range 

172 dynamics from a time series of abundances of Proteaceae species of the South African Cape. 

173 Demographic and detection parameters were estimated via simulation, with parameter values 

174 selected based on the match between simulated abundances (accounting for imperfect 

175 detection) and observed abundances. Simulated dynamics were restricted to areas identified 

176 as suitable habitat in a correlative SDM. Although this example assumed demographic 

177 parameters were constant throughout species’ potential ranges, Pagel and Schurr (2012) 

178 provided an expanded modelling framework (‘dynamic range models’) in which demographic 

179 rates can vary with the environment.

180 Challenges of abundance dynamics models include the appropriate selection of an underlying 

181 demographic model (although alternative model structures can be tested formally), as well as 

182 data availability and model identifiability (Schurr et al. 2012). Fitting these models may also 

183 be computationally challenging, depending on model complexity and temporal and spatial 

184 scale. Our review uncovered few examples of abundance dynamics models (n = 7). These 

185 were most commonly case studies using simulated species (Fig. 3a), where model structure 

186 (Pagel & Schurr 2012) or some parameters (dispersal, detection) are known perfectly (Zurell 

187 et al. 2016). It is therefore still unclear how readily abundance dynamics models can be 

188 applied to different sets of real data (Ehrlén & Morris 2015). 

189

190 Coupled SDM-population models (also known as hybrid models or coupled niche-

191 population models): Coupled SDM-population models have been used to predict responses 

192 of a wide range of species to environmental change (Fig. 3a, Pearson et al. 2014; Fordham et 

193 al. 2018). For example, Keith et al. (2008) used this approach to model the viability and 

194 spatial distribution of plant populations under climate change in South African fynbos. 
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195 Correlative SDMs were linked to spatially explicit stochastic population models by assuming 

196 carrying capacity scaled with predictions of species occurrence. If the population exceeded 

197 the predicted patch carrying capacity, the population’s vital rates (i.e. survival and fecundity) 

198 were reduced until abundance fell below carrying capacity. Dynamics in new habitat patches 

199 were governed by the species’ density-independent vital rates and seed dispersal. This hybrid 

200 approach can explicitly account for dispersal, species’ life history traits, and processes such 

201 as Allee effects, and should therefore predict extinction risk more accurately than estimates 

202 based only on the amount of habitat (Fordham et al. 2012). It is also well-suited to examining 

203 the interacting effects of multiple processes (e.g. land-use change, climate change, 

204 overexploitation, fire regimes) and conservation actions on species’ persistence (e.g. Wintle 

205 et al. 2005, Fordham et al. 2013a).

206  However, as correlative SDMs constrain predicted range shifts and carrying capacity, 

207 coupled SDM-population models face many of the same limitations highlighted in Box 1. For 

208 example, a species’ absence due to dispersal constraints or historic disturbances can cause 

209 correlative SDMs to underestimate potential habitat or carrying capacities in some 

210 environments, reducing the accuracy of population projections. Predictions of potential 

211 habitat and carrying capacities from correlative SDMs may also be unreliable when models 

212 are extrapolating (Elith et al. 2010). Despite this, most of the studies we reviewed that used 

213 coupled SDM-population models predicted range dynamics under climate change (Fig. 3b), 

214 often in combination with other drivers (Appendix S1). As noted by Gallien et al. (2010), 

215 using occupancy data – itself the outcome of spatial population processes such as biotic 

216 interactions, disturbances and dispersal – to model habitat and carrying capacity, and then 

217 overlaying a model that explicitly accounts for these same processes may over-emphasize 

218 these processes by effectively double-counting them (see also Zurell 2017). How this affects 

219 model prediction accuracy is currently not well studied. While early studies adopting this 

220 approach often assumed that carrying capacity was proportional to predicted habitat 

221 suitability from the correlative SDM, the relationship between probability of occurrence, 

222 demographic parameters and carrying capacity varies (VanDerWal et al. 2009; Thuiller et al. 

223 2014; Weber et al. 2017). Ideally, these potentially non-linear relationships should be 

224 estimated directly using empirical data, which is now more common (Fordham et al. 2013b).  

225

226 Demographic distribution models (DDM): Most demographic distribution models we 

227 reviewed were applied to plants (Fig. 3a). For example, Merow et al. (2014) used individual-
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228 level data on survival, growth, fecundity and seedling recruitment of Protea repens across 

229 South Africa to build integral projection models that predicted range dynamics under climate 

230 change. Regression models were fitted to vital rates and environmental variables and the 

231 fitted models used to project asymptotic population growth rates (λ) across the region. Range 

232 dynamics were inferred by assuming the species could persist only where λ > 1. Strengths of 

233 this approach include the ability to capture variation among individuals within a cohort (e.g. 

234 population structure), and efficient use of available data using regression techniques, both of 

235 which facilitate interpolation within the population structure and across environments. 

236 However, as data are only collected from sites where the species occurs, regressions of 

237 demographic parameters on environment are not informed by data from unsuitable sites. 

238 Experimental translocations beyond the range can provide this information (Crozier 2004; 

239 Crozier & Dwyer 2006; Merow et al. 2017) and reduce the likelihood of extrapolation. But, 

240 translocations may not be practical or ethical for many species, including invasive or 

241 endangered species. The use of λ to infer occupancy is also problematic, as it only provides 

242 information about population trajectories (under somewhat unrealistic assumptions of density 

243 independence, no net migration and stationary environmental conditions), and therefore may 

244 not accurately predict occurrence (Ehrlén & Morris 2015; Csergo et al. 2017). Likewise, 

245 demographic compensation may mean that range limits inferred from mapped predictions of 

246 a single vital rate (e.g. without incorporating the full life cycle and its potential trade-offs) 

247 may be misleading (Villellas et al. 2015). Finally, in many systems, few extreme individuals 

248 may define the dynamics of a population (e.g., super-breeders, long-lived individuals) so care 

249 must be taken when parameterising demographic models that extrapolate from individuals to 

250 populations (Clark et al. 2011; Vindenes & Langangen 2015).

251

252 Eco-physiological models (also known as mechanistic niche models):  Eco-physiological 

253 models have been applied to a range of taxa (Fig. 3a), but most commonly reptiles, 

254 amphibians and invertebrates, likely because data collection and modelling is often more 

255 straightforward for ectotherms. As predictions are based on mechanistic relationships, 

256 derived from experiments or first principles, and are closer to the idea of fundamental niche, 

257 they are expected to be more robust than correlative approaches when predicting range limits 

258 in new environments (Kearney & Porter 2009), provided key mechanisms are captured and 

259 climate is a key driver of range dynamics. Consistent with this, eco-physiological models 

260 have been widely used to model climate change impacts, as well as the potential range of 
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261 invasive species (Fig. 3b). Range predictions are typically based on estimates of individual-

262 level fitness components such as predicted survival of one or more life stages or reproductive 

263 output (Kearney et al. 2008, 2010), with these sometimes translated into metrics of 

264 population growth rate or relative abundances (Buckley & Roughgarden 2006; Levy et al. 

265 2015; Gutierrez et al. 2016). These models typically do not account for spatial population 

266 processes or landscape configuration. Eco-physiological models can be computationally 

267 intensive and are prescriptive about required environmental and trait data, which limits their 

268 feasibility under many circumstances. In many species, traits also vary within and between 

269 individuals and populations in ways that may influence range dynamics (Buckley 2008; 

270 Kolbe et al. 2010; Briscoe et al. 2012; Dong et al. 2017). This must be accounted for 

271 explicitly in eco-physiological models, further increasing data requirements and model 

272 complexity. While the modelled relationships should clearly define climatically unsuitable 

273 areas, other important drivers of range dynamics including fine-scale landscape features, 

274 resources and biotic interactions are often not included (Appendix S1), which can limit their 

275 utility and predictive performance (Tingley et al. 2014; Briscoe et al. 2016). 

276

277 Individual based models (IBMs, also called agent-based models): IBMs are particularly 

278 suited to understanding ecological dynamics in heterogeneous environments, where 

279 individual variation, local interactions or spatial processes such as dispersal are important 

280 (Cotto et al. 2017) and are commonly used to model invasive species spread (Fig. 3b). For 

281 example, Jordt et al. (2016) coupled a spatially explicit individual-based model with a 

282 correlative SDM that defined habitat to predict the potential expansion of wild boar across 

283 Denmark. IBMs based on virtual species are also commonly used to develop and test 

284 methods (Fig. 3), and explore mechanisms that drive species range dynamics, such as 

285 dispersal, evolution or biotic interactions (Bocedi et al. 2014; Henry et al. 2015; Mohd et al. 

286 2016). Whether an IBM overcomes challenges related to biased or imperfectly observed data, 

287 species non-equilibrium and extrapolation depends on how they are parameterised. Due to 

288 limited data availability, a mix of approaches is often used, and data sourced from a range of 

289 populations (e.g. Murphy et al. 2017). Scaling-up high-resolution IBMs to explore range 

290 dynamics can present computational challenges, particularly for widespread species (Wang 

291 2013; Liénard & Strigul 2016). 

292
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293 Matching promise to need

294 There are substantial challenges to using process-explicit methods for conservation and 

295 management questions. Model choice should therefore be driven by management needs to 

296 avoid investment in models that do not deliver. Relevant considerations include: the type of 

297 information required to make a good decision for the management objective, key processes 

298 that need to be captured, the risk of violating assumptions of the analytical approach, and data 

299 availability. As illustrated in Fig. 4, different models have different strengths; correlative 

300 SDMs can use widely available and easily collected data, coupled SDM-population and 

301 abundance models provide outputs of interest to managers (e.g. abundance, risk of 

302 extinction), and individual-based models readily capture processes such as dispersal and 

303 biotic interactions. Eco-physiological models are likely to provide more robust predictions in 

304 new environments or when species are not in equilibrium, demographic distribution models 

305 show promise for efficiently capturing individual variation, and occupancy dynamics models 

306 may effectively balance detailed dynamics and model complexity. 

307 The performance of a particular method depends heavily on how models are built and 

308 parameterised (Fig. 4, Appendix 2). For example, bias and detection can be accounted for in 

309 some correlative SDMs (and coupled SDM-population models, which rely on these), but this 

310 is not common practice (Araújo et al. 2019). Similarly, while examples exist of coupled 

311 SDM-population, eco-physiological and demographic distribution models that explicitly 

312 model biotic interactions (e.g. Buckley & Roughgarden 2006; Fordham et al. 2013b; Peron et 

313 al. 2016), these are rare. Individual implementations of models tend to focus on particular 

314 processes – with other processes ignored or simplified – mostly because it is extremely 

315 challenging to obtain data on all relevant processes from across species’ ranges.

316 Below we consider the promise of different process-explicit models for four major 

317 applications of modelled range dynamics.

318

319 Predicting ranges to inform planning and regulation 

320 Information about the species likely to occur at a particular location can be used to inform 

321 planning and regulate development. This requires predictions of probability of occupancy, 

322 potentially for many species. In some cases, such as regulatory approvals of development 

323 applications, the focus is whether species are likely to currently occur at the proposed impact 

324 site, which may trigger additional surveys or conditions on the development. However, in a 
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325 growing number of cases, often related to land-use or statutory planning, there is concern 

326 about where species might occur both now and in the future (Dunlop et al. 2012; Kujala et al. 

327 2015), requiring models that better capture dynamic processes.

328 Which methods show promise?

329 When the regulatory process requires only contemporary predictions, process-explicit models 

330 might not provide greater utility than correlative SDMs, assuming the data used to build the 

331 correlative SDM are appropriate (e.g. not biased, adequately cover environmental conditions, 

332 detection is high and consistent or accounted for; Guillera-Arroita et al. 2015). Occurrence 

333 data required to build correlative SDMs are often available or can be collected relatively 

334 quickly or easily, meaning that a wider range of taxa can be modelled to inform development 

335 planning (Whitehead et al. 2017). Model comparisons suggest that correlative SDMs can 

336 perform as well or better than process-explicit modelling approaches when predicting species 

337 occurrence under current conditions (Buckley et al. 2010; Briscoe et al. 2016; Zurell et al. 

338 2016), when the ability to identify and map a pattern is sufficient.

339 Accounting explicitly for dynamics may be important when predictions of future species’ 

340 occurrences are required for planning. The ideal method of prediction will depend on the type 

341 of dynamics relevant to the species, landscape or time horizon over which the plan holds 

342 jurisdiction. Occupancy dynamics and coupled SDM-population models readily capture the 

343 likely impacts of changes in spatial configuration of habitat (e.g. Heard et al. 2013). When 

344 long-term forecasts under climate change are required for plan development, approaches that 

345 are more robust to extrapolation, such as eco-physiological models, should be considered (see 

346 below: Identify climate refugia).

347 Caveats

348 Correlative SDMs may overpredict the area currently occupied by a species if they 

349 inadequately capture dispersal constraints or biotic interactions that prevent species 

350 colonising suitable habitat (Uribe-Rivera et al. 2017). Occupancy dynamics or coupled SDM-

351 population models that explicitly model dispersal processes may provide improved 

352 contemporary range predictions for dispersal-limited species in landscapes where range 

353 dynamics are strongly driven by periodic or stochastic disturbances, or species are unlikely to 

354 be in equilibrium with their environment (Bled et al. 2011). Coupled SDM-population 

355 models rely on correlative SDMs for input and are, therefore, impacted to some degree by 

356 errors in the SDMs. 
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357

358 Predicting extinction risk to evaluate and prioritize conservation and recovery actions 

359 By identifying species most at risk of extinction and evaluating options for reducing 

360 extinction risk, conservation practitioners can prioritise allocation of conservation resources 

361 to reduce the chances of species loss. This requires that the biological and population 

362 processes and exogenous drivers of population decline are accurately characterised. 

363 Modelling challenges include the fact that populations may not be at equilibrium with their 

364 environment (e.g. lagged responses to historic habitat loss or rapid environmental change) 

365 and the characteristic lack of monitoring and distribution data for many threatened species 

366 (Legge et al. 2018).

367 Which methods show promise? 

368 Coupled SDM-population models, abundance dynamics models, and many IBMs (e.g. Sun et 

369 al. 2016) provide predictions of population size through time, and explicitly account for 

370 dispersal and life history factors that may render species more vulnerable to extinction or 

371 responsive to conservation management (Keith et al. 2008; Cabral & Schurr 2010). To date, 

372 abundance dynamics models have primarily been fitted with simple population models (e.g. 

373 Ricker models) with relatively few covariates. Modelling complex life histories or 

374 environmental responses may be quite challenging, particularly if data are limited (Schurr et 

375 al. 2012). In contrast, coupled SDM-population models and IBMs can be parameterised using 

376 diverse sources, including previous studies of particular processes and expert knowledge 

377 (Penman et al. 2015; Sun et al. 2016), and hence show promise for this application. This 

378 flexibility also means that they are more commonly used to examine a suite of conservation 

379 actions or the interactive effects of multiple stressors, which may be critical for accurately 

380 forecasting extinction risk and identifying optimal management actions (Regan et al. 2003; 

381 Wintle et al. 2011; Fordham et al. 2013a). DDMs and eco-physiological models can provide 

382 predictions of population trajectories (and abundances if initial population sizes can be 

383 estimated). These methods are most likely to offer improved predictive capacity when vital 

384 rates are directly linked to the environment (Pomara et al. 2014). If intra or inter-specific 

385 interactions such as competition, predation or pathogens are thought to underpin fluctuations 

386 in population size or responses to conservation actions, then explicit incorporation of these in 

387 coupled SDM-population models (Fordham et al. 2013b) or IBMs may be a useful approach 

388 (Cramer & Portier 2001). 
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389 Occupancy dynamics models can estimate the probability of extinction (across the entire 

390 study region or select sites), including under different management scenarios, helping to set 

391 conservation priorities (Santika et al. 2014; Heard et al. 2018).  These methods can also be 

392 used to estimate changes in the area of occupancy, which can inform assessments of 

393 extinction risk (IUCN Standards and Petitions Subcommittee 2017). Occupancy dynamics 

394 models may be more easily applied to threatened species than other process-explicit models 

395 because the required occupancy data are more often available or more readily collected (Fig. 

396 4).

397 Caveats

398 The source and reliability of input data used to parameterise responses should be carefully 

399 considered. For example, projected species’ trajectories may be inaccurate if vital rates 

400 estimated from historical data or individual populations do not capture the current causes of 

401 decline or are inferred from closely related species that may differ in important ways (Che-

402 Castaldo et al. 2018). Similarly, potential habitat – an input to coupled SDM-population 

403 models and some IBMs – may not be estimated accurately from historical occurrence data 

404 (e.g. due to mismatch in time period, dispersal constraints, or lagged responses). Projected 

405 changes in the area of occupancy may not accurately reflect changes in population size or 

406 extinction risk, as these may not scale linearly (Lawton 1993; Fordham et al. 2012).

407

408 Identifying climate refugia for threatened species 

409 Climate refugia are areas where species can persist (and potentially expand from) under 

410 climate change (Keppel et al. 2012). Thus, models are required to identify areas that will be 

411 environmentally suitable, occupied or reachable by the species, and allow populations to 

412 persist as surrounding areas are lost (i.e. source rather than sink habitat). Crucially, 

413 identifying climate refugia often requires predicting where species will occur under novel 

414 environmental conditions (Williams & Jackson 2007). 

415 Which methods show promise? 

416 The need to predict species responses in novel environmental conditions poses challenges for 

417 approaches that forecast species’ responses from correlations between occurrence or 

418 demographic data and environmental predictors captured under current conditions. 

419 Extrapolation is of less concern for eco-physiological models that characterise limiting 

420 responses over the full expected range (e.g. thermal response curves spanning survival limits) 
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421 or are based on established physical principles likely to hold under novel conditions (e.g. 

422 heat-transfer physics). These methods should perform similarly in current and future 

423 conditions, and model realism can be tested under current conditions (e.g. Kearney et al. 

424 2018). To ensure that management effort is directed towards viable populations, models 

425 should capture the entire life cycle, including reproduction. Species’ abilities to track shifts in 

426 the future locations of suitable conditions should also be explicitly modelled, unless 

427 translocation is involved (Mitchell et al. 2012). Linking eco-physiological models, which 

428 often ignore spatial population processes, with population models or IBMs that explicitly 

429 incorporate information about dispersal capabilities and habitat configuration as well as other 

430 interacting processes such as disturbances, habitat loss or disease, should provide more 

431 reliable predictions of accessible climate refugia likely to support long-term population 

432 persistence (Fordham et al. 2013c).

433 Approaches that fit separate response curves for processes such as survival and fecundity or 

434 colonisation and extinction (e.g. DDMs, occupancy dynamics models) can account for 

435 processes such as demographic compensation (Villellas et al. 2015) and, may therefore be 

436 more robust to changes in correlation structure of environmental variables in future 

437 conditions (Evans et al. 2016). This contention is not yet tested, however, and extrapolating 

438 to novel environmental and biotic conditions remains a challenge not fully addressed by these 

439 approaches. Experimental demographic data, such as those from warming experiments 

440 (Panetta et al. 2018), could be used in DDMs or coupled SDM-population models to capture 

441 responses over a broader range of environmental conditions, reducing the need for 

442 extrapolation.

443 Caveats

444 Eco-physiological models may not provide accurate forecasts of climate refugia if spatial and 

445 temporal variation (e.g. local adaptation, evolutionary responses) in traits that drive responses 

446 to the environment are not accounted for. These approaches can also predict poorly if 

447 modelled responses are not the key factors limiting species’ range dynamics, such as when 

448 competitive interactions constrain range limits (McGill 2012). Modelling dispersal explicitly 

449 may be less important if species are likely to undergo range contractions rather than range 

450 shifts and if patterns of occupancy are not dynamic, but identifying such cases may be 

451 challenging. Similarly, a broader range of methods may be appropriate if climate change does 

452 not result in large changes in environmental conditions or inter-annual variation in long-term 

453 population or demographic data captures likely responses to future conditions. 



This article is protected by copyright. All rights reserved

454

455 Determining the risk of invasive species establishing and spreading in novel 

456 environments 

457 Risk assessments for invasive species pose one of the most challenging applications of range 

458 dynamics models. Predicting invasive range dynamics of a species using information from its 

459 native range frequently involves extrapolation, often into environments with novel biotic 

460 interactions and abiotic conditions, or novel combinations of conditions (Broennimann & 

461 Guisan 2008). Conversely, the assumption that species are at equilibrium and occupy all 

462 potential suitable habitat is likely to be violated if using data from the invasive range (Elith et 

463 al. 2010). For invasive species there are two broad decision contexts (Elith 2017): (i) what is 

464 the potential invaded range (to inform pre-incursion risk assessments)? (ii) given an outbreak, 

465 how far and quickly could a species spread and what is its likely impact?

466 Which methods show promise? 

467 As noted above, methods that model range dynamics based on biophysical constraints or 

468 experimental data (e.g. eco-physiological models, some IBMs, CLIMEX models if 

469 parameters are estimated from experimental data; Sutherst & Maywald 1985) can avoid 

470 issues of extrapolation. Eco-physiological models typically characterise the fundamental 

471 niche, so are less likely to underestimate the potential invasive range if biotic interactions 

472 constrain the species in its native range (Tingley et al. 2014). When predicting how far or 

473 how quickly a species could spread, the formal methods of invasion biology – reaction 

474 diffusion and integro-difference approaches – are powerful tools (Hastings 1996; Hastings et 

475 al. 2005), although these methods often assume homogeneous habitat. It is also apparent that 

476 spreading populations can experience rapid evolution causing invasions to accelerate (Phillips 

477 et al. 2010). While it is possible to capture such complexities in analytical models (Perkins & 

478 Nowak 2013), simulation is often necessary, and IBMs are the most flexible platform (Bocedi 

479 et al. 2014). By capturing dispersal constraints, simulation models can provide more realistic 

480 estimates of risk compared to mapping potential habitat, particularly if the location of the 

481 source population is known (Kearney et al. 2008; Prasad et al. 2010).

482 Caveats

483 When faced with an outbreak, rapid decisions require models that already exist or can be 

484 quickly implemented (e.g. using available or readily collected data; Fig. 4). Eco-

485 physiological models may overestimate risk if biotic interactions or dispersal limitations 
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486 constrain the invasive species, as these processes are typically not accounted for (although 

487 see Kearney et al. 2008; Gutierrez & Ponti 2014). Conversely, failure to account for 

488 evolution could lead models to underestimate the invasive range and the speed of the invasion 

489 (Kolbe et al. 2010). 

490 Often dispersal is characterised statistically within process-explicit models, but these 

491 relationships may be context-specific and not apply under altered environmental conditions 

492 or different spatial configurations of habitat. Mechanistic dispersal models that account for 

493 abiotic and biotic drivers of dispersal (Travis et al. 2012; Trakhtenbrot et al. 2014) could 

494 provide more reliable forecasts, particularly under novel conditions. 

495

496 Overcoming barriers to use

497 While process-explicit models show great promise for many applications, our collective 

498 experience using a range of modelling methods to inform conservation and management 

499 indicates there are two key barriers that currently restrict the use of these approaches: data 

500 availability and accessibility of methods.

501

502 Data availability

503 What is the problem?

504 Unlike correlative models, which use commonly available occurrence data, process-explicit 

505 models typically require detailed data on individuals or populations, often measured 

506 repeatedly through time and under multiple environmental conditions (Fig. 1). These data are 

507 typically lacking (Urban et al. 2016) and can be expensive and difficult to collect. For 

508 example, demographic distribution models require data on vital rates collected from 

509 populations that span key environmental gradients to adequately model range dynamics 

510 (Merow et al. 2014) – yet these are rare (Fig. 5). The estimation of demographic rates and 

511 population processes often requires long-term data collection: occupancy data used to 

512 parameterise models in the studies we reviewed used 14 years of data on average, and 

513 sometimes spanned > 50 years (van Strien et al. 2011). Abundance dynamics models fit by 

514 Zurrell et al. (2016) and Pagel and Schurr (2012) relied on 10–20 years of abundance data 

515 from 30–50 sites, as well as extensive presence-absence data. Given that long-term data 

516 collection efforts may exceed many research-funding cycles (Lindenmayer et al. 2012), it is 
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517 unsurprising that the data required to parameterise process-explicit models are rare. The need 

518 for specialist skills and equipment for data collection (e.g. animal capture or laboratory 

519 experiments) can also make data collection challenging. 

520 Correlative SDMs are often built using long-term averaged environmental data (e.g. mean 

521 annual temperature or rainfall) that are readily available at 1 km2 resolution across the globe 

522 for past, present, and even future conditions (Hijmans et al. 2005; Fick & Hijmans 2017). 

523 However, accurate projection of eco-physiological and demographic processes will often 

524 require that environments are characterised at much finer temporal and spatial resolutions to 

525 match the resolution over which these processes occur (e.g., hourly, daily or weekly data at 

526 cm2 or m2). This is likely to be particularly important for species whose microclimates are 

527 decoupled from macroclimate – such as some intertidal species, or species whose survival is 

528 strongly influenced by the timing or duration of extremes (Helmuth et al. 2010; Levy et al. 

529 2015; Maclean et al. 2017). Currently, these data are not readily available across large spatial 

530 extents (e.g., 100s km2) or time periods (historic, current and future), which may limit the use 

531 of process-explicit models in many applications. There can also be substantial uncertainty in 

532 existing long-term environmental data layers, particularly in poorly sampled regions (Fick 

533 and Hijmans 2017), and this uncertainty is likely to be higher for data at finer spatial and 

534 temporal resolutions (Kearney et al. 2014). 

535 Implications of poor data availability

536 The belief that process-explicit models will generate more reliable predictions than 

537 correlative methods is based partly on an assumption that these methods more accurately 

538 capture (and project) the fundamental processes that underpin species’ range dynamics. 

539 However, without detailed observations of individual or population responses across the full 

540 range of environmental conditions (either in the lab or in the field), such processes may not 

541 be accurately captured. In these situations, generating predictions at large spatial extents will 

542 require extrapolation or interpolation. Given that the drivers of population dynamics and 

543 species traits can vary in space and time (Jongejans & Kroon 2005; Messier et al. 2010) and 

544 at different scales, process-explicit models that extrapolate or interpolate ecological processes 

545 might not support reliable predictions (Coutts et al. 2016). Similarly, reliable predictions will 

546 not be achieved if environmental data used to project process-explicit models do not 

547 accurately match those used to parameterise the model (e.g. local temperatures measured in 

548 the field or during laboratory experiments) – and lack of environmental data at appropriate 

549 scales may increase prediction uncertainty (Levy et al. 2015; Briscoe et al. 2016).
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550 Cause for optimism

551 Relevant data are increasingly being collated in centralised databases (e.g. BAAD: Falster et 

552 al. 2015; GlobTherm: Bennett et al. 2018; AmP: Marques et al. 2018; Global Population 

553 Dynamics Database: NERC 2010; COMPADRE: Salguero-Gómez et al. 2015; COMADRE: 

554 Salguero-Gómez et al. 2016; see Fig. 5) and efforts are underway to enable large global 

555 biodiversity databases (e.g. GBIF https://www.gbif.org; BIEN http://biendata.org) to store 

556 new data types, including trait data, and repeat survey and count data that underpin many 

557 occupancy and abundance models. Citizen science projects, (e.g. eBird; Sullivan et al. 2014), 

558 and collaborations between NGOs, governments and individuals (e.g. MAPS; Saracco et al. 

559 2008) are rapidly increasing the availability of occurrence, abundance and demographic data 

560 at fine spatial and temporal resolutions over large spatial extents. Similarly, high resolution 

561 satellite data and aerial survey techniques are improving our ability to regularly monitor 

562 changes in population abundance or occurrence over large or remote areas (Tredennick et al. 

563 2016; Fretwell et al. 2017). 

564 Alongside increases in species data availability, new methods are being developed to make 

565 better use of existing data, supporting parameter estimates in situations typically assumed to 

566 be data-limited. Recently developed statistical methods enable estimates of demographic 

567 parameters without requiring repeated surveys of marked individuals, drawing on non-

568 traditional data types (e.g., growth nodes and rings, otoliths; Morrongiello et al. 2012; Cohn 

569 et al. 2013; Merow et al. 2014; paleoecological data; Fordham et al. 2016a) and readily 

570 available population data (e.g., inverse population models; Doak & Morris 1999; González et 

571 al. 2016). These methods are complemented by statistical tools suited to complex ecological 

572 models, including integrated models and simulation-based inference (Schaub & Abadi 2011; 

573 Hartig et al. 2011; Maunder & Punt 2013; Fithian et al. 2015). 

574 Environmental data are also increasingly available. These include spatial predictions of 

575 microclimates at continental or global scales (Kearney et al. 2014; Levy et al. 2016), as well 

576 as computational tools for generating microclimate predictions from gridded weather data 

577 (e.g. Kearney & Porter 2017). High-resolution satellite data and new computational 

578 approaches are being used to obtain fine spatial (5–25 m) and temporal information on land 

579 cover, soil properties, vegetation structure, surface temperature and disturbance (Goodwin & 

580 Collett 2014; Midekisa et al. 2017), although it remains challenging to project models 

581 parameterised using these data to the future, and uncertainties in these data are often ignored.
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582

583 Accessibility of methods

584 What is the problem?

585 Process-explicit models have emerged from different disciplines, each with their own 

586 terminology and technical methods. Many of these methods are yet to be applied widely to 

587 modelling range dynamics and, in some cases (e.g. complex eco-physiological models, IBMs 

588 or abundance dynamics models), their implementation can require substantial computing 

589 power, time and technical expertise (Zurell et al. 2016). As a result, many process-explicit 

590 models are not readily accessible, particularly compared to correlative SDMs. Free, open-

591 source software is available (Lurgi et al. 2015), but only for a subset of methods and, where 

592 software does exist, a lack of technical knowledge can hamper potential applications.

593 Implications of poor method accessibility

594 Inaccessibility will limit the uptake of many process-explicit models, preventing their use for 

595 applications where they are likely to deliver substantial benefits over traditional correlative 

596 SDMs. A lack of accessible software and computational power makes it difficult to test the 

597 capability and limitations of process-explicit models through detailed sensitivity analyses. 

598 Thus many studies, particularly those using complex eco-physiological models or IBMs that 

599 involve detailed calculations (e.g. of microclimates and/or organism states) at fine time steps 

600 over broad spatial scales, do not comprehensively explore potential sources of uncertainty.  

601 Such tests have been critical to the uptake and implementation of correlative SDMs, 

602 identifying technical, practical, and conceptual limitations of these methods (Elith et al. 2006, 

603 2010). Lastly, the technical complexity of many process-explicit models can discourage 

604 potential collaborations among disciplines, reducing opportunities to share knowledge and 

605 expertise that might otherwise overcome barriers to the implementation of process-explicit 

606 models.

607 Cause for optimism

608 Rapid increases in computing power are overcoming computational barriers associated with 

609 many process-explicit models (Grimm & Berger 2016). Increases in computing power are 

610 complemented by increased interest in explicitly modelling ecological processes, which has 

611 led more researchers to address the technical and computational barriers posed by these 

612 methods and make software more openly available (Nenzén et al. 2012; Metcalf et al. 2013; 

613 Kearney & Porter 2017; Leonard et al. 2017). 
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614 These advances will enable more applications of process-explicit models, and it is likely that 

615 detailed documentation of methods will accumulate alongside applications. Broader uptake of 

616 standard protocols for describing model implementations (e.g. ODD protocol; Grimm et al., 

617 2010) will also increase model accessibility. There is growing interest in calibration, 

618 verification and sensitivity analysis for process-explicit models (Augusiak et al. 2014; van 

619 der Vaart et al. 2016). Methods for running sensitivity analyses and propagating key sources 

620 of uncertainty are now commonly applied to some model classes (e.g. coupled SDM-

621 population models, Naujokaitis-Lewis & Curtis 2016; Fordham et al. 2016b), and 

622 increasingly being developed and applied to others (e.g. IBMs, van der Vaart et al. 2015, 

623 DDMs, Paniw et al. 2016). 

624

625 Next steps

626 Although there is substantial cause for optimism, targeted efforts to increase the availability 

627 of data and the accessibility of methods will hasten progress towards reliable models of range 

628 dynamics. Active collaboration among disciplines and with research fields such as 

629 epidemiology or agriculture (e.g. Bradhurst et al. 2015), which face similar objectives and 

630 challenges, will foster the development of new process-explicit models, drawing on the 

631 complementary strengths of existing methods (Fig. 4). Collaborations among disciplines need 

632 to be supported by common goals. One possibility is to identify specific examples or case 

633 studies using simulated or real datasets that could be used to develop, demonstrate, and test 

634 multiple process-explicit models (Zurell et al. 2016; Fordham et al. 2018). Ideally input and 

635 test data would be made available so that models can be re-evaluated (or new models tested) 

636 as methods develop. Focusing on a common example would help standardise model outputs 

637 and testing, potentially removing linguistic or historical barriers among disciplines. 

638 Validation of model predictions against independent data has been critical in identifying key 

639 limitations and developing methods to improve predictive performance of correlative SDMs 

640 (Elith et al. 2006; Uribe-Rivera et al. 2017), though admittedly there is still much progress to 

641 be made (Araujo et al. 2019). Process-explicit models make definitive statements about the 

642 processes driving range dynamics that can be tested against other sources of data including 

643 independent measurements of vital rates, dispersal, activity and genetic data (Cabral & Schurr 

644 2010; Rossman et al. 2016; Kearney et al. 2018). Model output can also be tested against 

645 independent occurrence or abundance data (Merow et al. 2014; Briscoe et al. 2016; Fordham 
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646 et al. 2018). Yet our review of process-explicit models found that model outputs were not 

647 commonly quantitatively evaluated against independent data (< 30% of studies).  This is 

648 consistent with a recent review of correlative SDMs, which found that > 50% of studies did 

649 not evaluate model outputs against independent data (Araújo et al. 2019). This hampers our 

650 understanding of the transferability of models, and is particularly problematic when process-

651 explicit models are used to forecast range dynamics in new times and places (Fig. 3). More 

652 consistent tests of process-explicit models, including hindcasting (Wethey & Woodin 2008; 

653 Fordham et al. 2018) and simulation studies (Zurell et al. 2016), are needed to help determine 

654 which conceptual and practical barriers are important to different applications, and test 

655 expectations about model performance (Fordham et al. 2016a). In addition, tests of model 

656 predictions could be used to assess how data availability and quality affect model 

657 performance (Pagel & Schurr 2012) and help target data collection towards particular data 

658 types and sampling regimes most expected to improve predictive performance.

659 Readily accessible software is crucial to the uptake and application of process-explicit 

660 models. Alongside the development of open-source software, detailed documentation, as well 

661 as non-technical guides and tutorials (e.g. Merow et al. 2014b; Railsback & Grimm 2019) 

662 should improve accessibility and implementation of process-explicit models. Perhaps most 

663 importantly, however, greater quantitative and computational training, and stronger 

664 collaborations between those with specialist modelling expertise and field ecologists, 

665 physiologists and land managers with detailed understanding of the study system, will 

666 improve the uptake and implementation of these methods. 

667

668 Conclusion

669 Despite their differences (Fig. 1), process-explicit models are commonly perceived 

670 collectively as overcoming limitations of correlative SDMs. This can make it difficult for 

671 potential users to select the most appropriate method for their given application. Importantly, 

672 there is no silver bullet. None of the reviewed approaches overcome all the challenges 

673 associated with modelling range dynamics (Fig. 4).  Their use should therefore be driven by 

674 careful consideration of the application and species: the types of information required to 

675 make a decision, key processes to be included, how these processes will be characterised and 

676 an understanding of underlying assumptions and data availability. Combining multiple 

677 approaches (e.g. using output from physiological models as input into an IBM or population 



This article is protected by copyright. All rights reserved

678 model) could draw on the strengths of different approaches (Malishev et al. 2018; Thomas & 

679 Bacher 2018). However, more complex models can take longer to build, lack appropriate data 

680 to parameterise, and can also be more difficult to interpret and communicate to other 

681 researchers and decision-makers (Dormann et al. 2012). 

682 In general, process-explicit methods are data hungry, and a lack of data increases the gap 

683 between theoretical potential and realised outcomes (Singer et al. 2016). For example, 

684 occupancy dynamics and abundance dynamics models can theoretically account for spatial 

685 dependence when simulating range dynamics, but this requires data at appropriate scales to 

686 estimate these relationships. Similarly, the detailed knowledge and data required to select 

687 appropriate physiological thresholds, reliably model microclimates or identify key processes, 

688 can make it difficult for eco-physiological models to achieve good predictive performance 

689 (Buckley et al. 2010). Two of the key studies that evaluate process-explicit SDMs have 

690 shown that more complex models that explicitly capture additional processes do not always 

691 provide more reliable predictions (Zurell et al. 2016; Fordham et al. 2018). Investment in the 

692 collection and collation of species and environmental data required for these methods is 

693 needed (Urban et al. 2016), but these efforts should be strategic and informed by explorations 

694 of how data availability and quality affect model performance for different taxonomic groups 

695 or applications (Buckley 2008; Pagel & Schurr 2012; Rossman et al. 2016). Critically, 

696 quantitative evaluation of whether process-explicit models capture important responses and 

697 sub-processes and accurately predict occurrence and abundance patterns needs to become 

698 standard practice.

699 In addition to improving forecasts of species range dynamics, process-explicit models have 

700 the potential to dramatically increase our understanding of the mechanisms that drive range 

701 dynamics. Such an understanding can help identify and evaluate potential management 

702 actions (Florance et al. 2011; Keith & Spring 2013; Penman et al. 2015; Merow et al. 2017). 

703 This ability to explicitly model the effect of relevant actions on conservation outcomes is 

704 appealing to managers and policy makers and might justify efforts to collect the species and 

705 environmental data required to capitalise on the promise of process-explicit approaches.  

706
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Box 1. Correlative SDMs: key challenges and missing processes

A major challenge in using correlative SDMs for predicting range dynamics is defining 

the link between the modelled distribution and the species niche (Colwell & Rangel 
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2009). It is often impossible to disentangle the biological (e.g. dispersal limitation, 

biotic interactions) and observational processes (e.g. bias, imperfect detection) that 

influence where species are observed, and to characterise species’ responses over 

relevant dimensions of environmental space. Models are likely an incomplete and 

potentially biased representation of the niche that may not extrapolate well to new 

conditions.  Specific challenges include:

● Observation bias, including imperfect detection – observations of where species

occur are often biased or incomplete due to uneven sampling or imperfect

detection.

● Non-equilibrium/ Source-sink dynamics – the assumption that species fill their

niche (i.e. where average fitness > 1) and do not occur elsewhere is often not true.

● Extrapolation – relationships fitted under current conditions may have to be

projected beyond the range of the training data to predict to new conditions. This

is problematic for correlative models. Moreover, they may no longer capture key

limiting processes in new times or places (due to changes in correlation structure

between environmental variables, biotic interactions, local adaptation, evolution).

● Dispersal – projections usually assume that species distributions are not affected

by dispersal limitations (e.g. dispersal ability or physical barriers), but they often

are.

● Biotic interactions – facilitation, competition and predation (including historic) can

influence species’ ranges but these effects are often incompletely captured by

modelled relationships and likely to vary under novel conditions.

1187

1188

Box 2: Population models and process-explicit models 

Population models capture fundamental demographic processes that 

underpin range dynamics and thus have played a central role in the 

development of process-explicit distribution models. Mathematically, 

population dynamics can be captured most succinctly with reaction-diffusion 
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models or integro-difference models (Skellam 1951; Hastings et al. 2005), 

which combine a function for population growth with one for dispersal. Many 

process-explicit models of species’ ranges can be seen as variations on this 

basic theme of combining descriptions of growth and dispersal.  Both can be 

arbitrarily complex: population models might, for example, consist of matrix 

population models (Caswell 2001) or integral projection models (Ellner et al. 

2016), which explicitly capture age or size-based differences in vital rates. 

Dispersal can, likewise, be modelled in different ways (Travis et al. 2012). At 

the most complex, individual-based models (IBMs) readily incorporate 

individual heterogeneity and context-dependent rates (DeAngelis & Grimm 

2014). The challenge for applications of range dynamics models is to link 

population dynamics and dispersal or movement to the environment with 

enough detail to accurately predict species’ abundances or occurrences 

through space and time.

1189

1190

Box 3: Different classes of process-explicit models 

Occupancy dynamics models (also known as species patch occupancy models; 

SPOMs): species occurrence data across time are used to estimate probabilities of 

local extinction and colonisation. These probabilities can then be used to predict 

future range dynamics, including via stochastic simulation (Heard et al. 2013; 

Garcia-Valdes et al. 2013).

Abundance dynamics models (including dynamic range models, DRM): here 

defined as models where spatially replicated time series of species’ abundances 

(possibly coupled with occurrence data) are used to estimate latent demographic 

properties such as population growth rate and dispersal within an integrated 

hierarchical model (Pagel & Schurr 2012). The resulting model can then be used to 

simulate future abundance.

Coupled SDM-population models (also referred to as hybrid models or coupled 

niche-population models): spatial predictions from a correlative SDM are used to 
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define habitat patches, initial abundances and/or the carrying capacity of these 

patches through time. This habitat structure is combined with external 

information about vital rates and dispersal (e.g. a matrix population model 

(Caswell 2001) with a dispersal kernel), which may be constant across the 

landscape or vary with features of the environment estimated directly from 

spatially replicated field data or based on previous studies or expert opinion 

(Fordham et al. 2013a). The resulting spatial population model is used to predict 

future population abundances via stochastic simulation (Akçakaya 2000; Keith et 

al. 2008; Fordham et al. 2012). 

Demographic distribution models (DDM): demographic rates (e.g. survival, 

development, fecundity) are estimated directly from individual demographic field 

data, and correlated with environmental predictors to make spatial predictions of 

these rates (Suárez-Seoane et al. 2017) or population metrics (e.g. population 

growth rate, Merow et al. 2014). Modelled demographic rates could also be 

combined with dispersal information in a spatial population model, although 

examples of this are rare (García-Callejas et al. 2017).

Eco-physiological models (also known as mechanistic niche models): 

measurements or calculations of physiological limitations of the environment on 

vital rates are used to define species’ range limits.  This is necessarily done at the 

scale of the individual and relies on an adequate characterisation of the 

environment experienced by individuals, as well as details on the species’ 

physiology, morphology, behaviour and life history (Kearney & Porter 2004, 

2009).

Individual based models (IBMs, also called agent-based models): simulated 

populations are composed of discrete individuals, each with a set of attributes and 

behaviours.  These attributes and behaviours can vary among individuals and in 

response to environmental conditions, interactions with conspecifics or other 

species, and through time. Dynamics emerge from local interactions among 

individuals and their environment (DeAngelis & Grimm 2014). Parameters may be 

fitted using experimental or field data on individuals such as development times 

under different temperatures (Feng et al. 2016), or inversely fitted to observed 
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occurrence or abundance data using a pattern-oriented modelling approach 

(Adams et al. 2015).

1191

1192

1193 Figure legends

1194 Figure 1 Characterisation of process-explicit distribution model classes (columns) with 

1195 respect to typical inputs (*), key steps, and model outputs. Arrows indicate how input data are 

1196 used to compute/estimate intermediate quantities and arrive to model outputs. Rows above 

1197 ‘Environmental Predictors’ represent increasing levels of biological organisation (individuals, 

1198 populations, species). Methods differ in terms of the processes they capture, the level at 

1199 which these are characterised, and whether they are typically modelled as a function of 

1200 environment predictors. Model outputs may be abundance (Abund), or occupancy (Occ). 

1201 Processes captured at the population level include colonisation (Col), extinction (Ext), 

1202 detection (Det), dispersal (Disp), population growth parameters (Pop Growth), and density 

1203 dependence (via carrying capacity (K)). Individual trait and demographic data or vital rates 

1204 are also used in some models. Double headed arrows indicate that process parameters are 

1205 estimated based on matching emergent patterns of occurrence or abundance (e.g. in 

1206 occupancy and abundance dynamics models), rather than these data being used to 

1207 characterise processes separately (e.g. in coupled SDM-population models where past or 

1208 current occurrence data are combined with environmental predictors in an SDM to describe 

1209 carrying capacity, which is later used when simulating abundance). Dashed arrows indicate 

1210 common alternative links (e.g. eco-physiological models can either model vital rates using 

1211 species’ traits and environmental data or estimate these using experimental demographic data 

1212 measured under varying environmental conditions).  

1213 Figure 2. Predicting range dynamics involves characterising relevant processes (blue) and 

1214 producing predictions based on the parameterised model (green). Sometimes this takes place 

1215 simultaneously (i.e. the same model is fitted to data for estimation and used to project 

1216 dynamics). Processes can be modelled from first principles based on biophysical constraints 

1217 or estimated using experimental data. Processes can also be estimated from field data, either 

1218 based on direct observations or by fitting statistical models to infer them from abundance 

1219 and/or species occurrence data. Expert knowledge can also inform model structure and 
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1220 parameters. Range dynamics predictions can be produced by running simulations, where the 

1221 status of a cell or individual at a time step is a function of the conditions in the previous time 

1222 step (at that cell, and potentially at neighbouring cells). Alternatively, ‘static’ predictions may 

1223 be produced, where a metric expected to reflect the outcome of range dynamics is obtained 

1224 without modelling temporal dynamics.

1225 Figure 3. Number of reviewed papers from each class of process-explicit models focused on 

1226 particular (a) taxonomic groups and (b) applications/research areas. Research areas include 

1227 demonstrating or refining a new method (Method dev); examining the impact of changes in 

1228 key drivers: climate/weather (Climate change), land-use and landscape dynamics 

1229 (LandscapeDyn); threatened species management (Extinction risk, Key habitat), and invasive 

1230 species (Range invasives, Spread invasives). Separate literature searches were conducted for 

1231 each model class and a subset of papers reviewed (n=75-125 in each class, total n= 650). 

1232 Sample sizes represent the number of reviewed papers that actually used each approach, and 

1233 hence differ between model classes. These are shown above bars in (a). Studies often 

1234 addressed more than one application/research area and sometimes multiple taxonomic groups 

1235 (see Appendix S1 for additional details).  

1236 Figure 4. Ability of different types of range models to provide particular types of 

1237 information, capture key processes, as well as risk of violating key assumptions, and data 

1238 availability. Colour/size indicate suitability (or ease or danger) for task (see Appendix S2 for 

1239 justification of rankings). 

1240 Figure 5. Availability of demographic data (the number of replicate populations per study) in 

1241 two global demographic databases Compadre (plants; Salguero-Gómez et al. 2015) and 

1242 Comadre (animals; Salguero-Gómez et al. 2016). 
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Merow et al (2014) used field demographic data to estimate vital 

rates, as a function of environmental conditions, and derived 

population growth rate (�) as a proxy for future species occurrence 

Pagel & Schurr (2012) used a hierarchical Bayesian model to infer 

demographic processes from abundance time series and occurrence 

layer data, and to simulate species occurrence into the future
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