
Buloke woodlands of the Riverina and 
Murray-Darling depression bioregions 
(also called buloke woodlands or 
pine-buloke woodlands) is an EPBC 
Act-listed Endangered ecological 
community. The community was 
heavily cleared and degraded for 
pastoral and cropping uses. The 
restoration, and conservation, of 
remnant patches of this semi-arid 
woodland is tied to the management 
of the threat of grazing and browsing 
by native and feral vertebrate species. 
The risk of grazing damage to 
palatable herbs, shrubs, and seedlings 
is related to the availability of forage 
(biomass). Therefore, understanding 
how understorey biomass (particularly 
grass) varies over the landscape and 
over time is essential for herbivore 
management. Clipping and weighing 
vegetation samples is an accurate 
and direct way of determining 
aboveground understorey biomass, 
but it is time-consuming and labour-
intensive. As such, it is unlikely to be 
integrated into regular management 
practice. Another way to do this 
is by using remote sensing, which 
has the potential to estimate biomass 
frequently and over large areas. 
However, the performance  
of remote sensing in semi-arid areas 
has been less reliable due to sparse 
vegetation cover, soil background, 
as well as dead vegetation and litter. 
We investigated the ability of remote 
sensing data to predict understorey 
biomass variation, and therefore 
forage, to inform the management  
of herbivore populations.

• We sampled the biomass at 
40 sites in different vegetation 
types across Pine Plains, 
Wyperfeld National Park (see 
Figure 1): buloke woodland  
(n = 10), open grassland 
(cleared buloke woodland)  
(n = 10), black box woodland  
(n = 10), and lakebed (n = 10).  
In 2019, we sampled an 
additional 6 sites in each 
vegetation type (total: 64 sites).

• Each site measured 90 × 90m, 
corresponding to a 3 × 3 
Landsat satellite image pixel 
arrangement. We focused 
sampling in the centre pixel, 
though a larger area of 
homogeneous vegetation  
was chosen to account  
for any satellite or GPS 
registration errors.

Can remote sensing be used to estimate biomass for the 
management of grazing pressure in buloke woodlands?
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Figure 1. This research was undertaken at Pine Plains, Wyperfeld National Park.



Research methods (continued)

• Several quadrats were sampled 
within each site. At each 
quadrat, species were visually 
ranked in terms of biomass to 
estimate understorey species 
composition. We clipped 
biomass to just above ground-
level, then separated into live 
and dead. Samples were dried 
and weighed. We collected 
biomass during seven field 
trips between December 2016  
and May 2019.

• Landsat 7 and 8 imagery 
(freely available online) 
was downloaded for the 

same period. We developed 
semi-automated routines 
to integrate data from both 
Landsat sources, interpolate to 
daily values, and then calculate 
vegetation indices (Table 1).

• We modelled the relationships 
between these indices and 
understorey biomass. Soil 
moisture, canopy type (open 
or wooded), and dominant 
understorey growth form 
(annual grass, perennial  
grass, herb, shrub) were  
also included in the  
statistical models.

Table 1. Vegetation indices tested, with an overview of the sensitivities of each (USGS 2019, Baig et al. 2014). 

Vegetation Index Description

Normalized Difference 

Vegetation Index (NDVI)

Used to quantify vegetation greenness and vegetation density. Higher values indicate denser 

green vegetation. Values 0.1 and below correspond to areas of rock, sand, or snow.

Enhanced Vegetation Index 

(EVI)

Like NDVI, but EVI corrects for some atmospheric conditions and canopy background noise. 

Higher values indicate denser green vegetation.

Soil Adjusted Vegetation 

Index (SAVI)

Minimises the influence of soil brightness in areas with low vegetation cover. Higher values 

indicate denser green vegetation.

Modified Soil Adjusted 

Vegetation Index (MSAVI)

Also minimises the influence of soil brightness, but more sensitive to vegetation signals than 

SAVI. Higher values indicate denser green vegetation.

Normalized Difference 

Moisture Index (NDMI)

Used to determine vegetation water content. Less sensitive to atmospheric effects than NDVI. 

Positive values represent green vegetation, while negative values indicate bright surfaces with 

dry or no vegetation.

Tasseled Cap Brightness

Measures total reflectance in an image. It’s associated with bare or partially covered soil, 

natural and built features, and variations in topography. Higher values indicate bare ground,  

or minimal or dry vegetation.

Tasseled Cap Greenness Measures vegetation density and cover. Higher values indicate denser green vegetation.

Tasseled Cap Wetness Sensitive to soil moisture, canopy moisture, and water.

Figure 2. Clipping biomass at a lakebed site  
in April 2017. Image: Linda Riquelme



BELOW: Buloke woodland. 
Image: Linda Riquelme

• Pine Plains is a mosaic of 
wooded stands and open 
plains. As you might expect, 
the main driver of understorey 
biomass variation is tree cover. 
We sought to understand this 
and other drivers of biomass 
over space and time, before 
modelling and predicting 
understorey biomass. Although 
wooded sites had greater 
total aboveground biomass, 
they had significantly less 
understorey biomass than 
open sites (especially grass; 
Figure 4). There was a lot of 
site variation in understorey 
biomass even within 
vegetation types, however.

• Above average rain fell during 
winter and spring 2016. 
Conditions became drier during 
2018 and 2019, leading to an 
overall drop in understorey 
biomass. Both total understorey 
and grass biomass peaked 
in spring 2017, but otherwise 

remained quite stable during 
the study period until May 2019, 
where it dropped in open  
areas (Figure 4). Live biomass 
was at its highest in winter 
2017, then consistently 
declined over the next year.  
There was a very slight 
increase in live biomass  
between May 2018 and  
May 2019 (Figure 4).

• Grass tended to fall close to 
or below the proposed forage 
switch threshold in wooded 
areas during the summer and 
autumn months (Figure 4).

Key findings

Figure 3. Recent Google Maps aerial image of Pine Plains (left); Tasseled Cap Greenness during wet (centre) and dry (right) periods.  
Higher values indicate higher amounts of green vegetation.



• We used biomass and remote 
sensing data collected 
between December 2016 and 
May 2018 to train Generalised 
Linear Mixed Models (GLMM) 
to explain and predict biomass 
variation across Pine Plains and 
over the sampled seasons.  
Remote sensing models 
explained 24% of total, 44%  
of live, and 40% of grass 
biomass variation (R2m values); 
when taking site differences 

into account (R2c values), 
models explained 56%,  
53%, and 87% respectively 
(Table 2). Although vegetation 
indices performed similarly, 
different indices worked 
best for different types  
of biomass (Table 2).

• Including dominant 
understorey growth form  
did little, if anything,  
to improve models.

Figure 4. Total understorey (live and dead, all growth forms) (top left); live understorey (all growth forms) (top right), and grass (live and dead) 
(bottom left) biomass over the sampling period (Dec. 2016 – May 2019). Red line (bottom left) represents Norbury’s (1987) 400 kg ha-1 forage 
switch threshold. Daily rainfall and mean monthly rainfall anomaly for Walpeup (BoM station 76065) for June 2016 – June 2019 (bottom right).

RIGHT: A grazed buloke sapling. Image: Linda Riquelme

Key findings (continued)



• Making explanatory models 
is one thing, but for a model 
to be useful for future 
management, its capacity  
to predict to new data is 
crucial. We predicted biomass 
to a new set of samples from 
May 2019. Some of these sites 
were in the training data set, 
some were new.

• We then compared model 
predictions to the observed 
biomass for that period  
(Figure 5).

• Predictions from remote 
sensing did better for “known” 
(resampled) sites (Figure 5(a)) 
than to sites that the model 
had never “seen” (new and 
anonymised resampled sites) 
(Figure 5(b)). Observed grass 
biomass tended to be lower 

than the model predicted, 
however. Although grass is 
highlighted here (Figure 5), 
models for all understorey 
biomass types predicted better 
to “known” than to “new” sites.

• Variation in understorey 
biomass across the landscape, 
even within the same canopy 
type, was not captured using 
remote sensing (Figure 5).

Table 2. Biomass models. “Soil moisture” refers to mean soil moisture for a one-month period, with a two-week lag.  

The “ε
i
” term captures unexplained variation attributable to differences in sampling locations, otherwise known as “random” site variation.

Biomass Model R2m R2c

Total biomass ~ Greenness + soil moisture + canopy + ε
i

0.24 0.56

Live biomass ~ EVI + soil moisture + canopy + ε
i

0.44 0.53

Grass biomass ~ Brightness + Greenness + Wetness + soil moisture + canopy + ε
i

0.40 0.87

Figure 5. Predicted vs observed (field measured) grass biomass. Predictions to “known” (resampled) sites (a), and when all sites assumed to be  
“new” (b). r values indicate strength of correlation between “observed” and “predicted” values. Images show the range of biomass within wooded 
(left) and open (right) sites within a single season.

Grass - May 2019

(a) Model predicting to “known” (resampled) sites
(b) Model predicting to sites assumed to be “new”  

(i.e. model does not consider site effects)

Wooded sites: sparse ➝ dense grass biomass Open sites: sparse ➝ dense grass biomass



This project is supported through funding from the Australian 
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• The model was reasonably 
skilled at predicting grass 
biomass to new observations 
from known (previously 
sampled) sites (r = 0.65;  
Figure 5(a)).

• The model was unskilled 
when predicting to new or 
anonymised sites (r = 0.35; 
Fig. 5(b)). This indicates that 
biomass variation is responding 
to factors that have not been 
included in the model, such 
as small-scale variations in 
topography, soil type, soil 
moisture, or nutrient availability, 
for example.

• The model tended to 
overpredict grass biomass at 
known sites. This would need 
to be taken into account to 
avoid grass biomass dropping 
below the forage switch 
threshold and not being 
detected, thereby increasing 
the over-grazing risk.

• Although total understorey 
biomass remained relatively 
stable over time, the amount 
of live understorey biomass 
dropped with decreasing 
rainfall (Figure 4). The forage 
switch threshold (Norbury 
1987) is based on total (live and 
dead) grass biomass. However, 
the relative importance of live 
and dead forage may differ,  
as forage availability decreases 
in the field: kangaroos 

generally prefer green grass, 
but will also eat dry grass, 
forbs and shrubs during times 
of drought (e.g. Dawson et al. 
1975, Dawson & Munn 2007).  
It is unclear how changes in 
live forage availability might 
alter the threshold.

• The biomass models use  
soil moisture data with a  
5 × 5 km resolution. Rainfall 
events can be patchy, which 
could influence soil moisture 
at a smaller scale. As existing 
soil moisture data does 
not capture this variation, 
estimates could potentially  
be improved by installing 
multiple weather stations 
across forage monitoring sites.

• We suggest that other methods 
are needed to obtain reliable 
large-scale estimates of 
biomass. Some preliminary 
work indicates a Rising Plate 
Meter or a drone with a 
multispectral scanner may  
be a more useful alternative  
for monitoring forage than 
satellite remote sensing.

• Future work will compare 
different biomass estimation 
models in terms of cost, 
suitability and precision.  
A biomass production model 
based on the Pine Plains data, 
will then be developed to 
predict forage over time.
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