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Abstract 18 

Detecting trends in species' distribution and abundance is essential for conserving threatened 19 

species, and depends upon effective monitoring programs. Despite this, monitoring programs 20 

are often designed without explicit consideration of their ability to deliver the information 21 

required by managers, such as their power to detect population changes. Here, we demonstrate 22 

the use of existing data to support the design of monitoring programs aimed at detecting 23 
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declines in species occupancy. We used single–season occupancy models and baseline data to 24 

gain information on variables affecting the occupancy and detectability of the threatened brush-25 

tailed rabbit-rat Conilurus penicillatus (Gould 1842) on the Tiwi Islands, Australia. This 26 

information was then used to estimate the survey effort required to achieve sufficient power to 27 

detect changes in occupancy of different magnitudes. We found that occupancy varied 28 

spatially, driven primarily by habitat (canopy height and cover, distance to water) and fire 29 

history across the landscape. Detectability varied strongly among seasons, and was three times 30 

higher in the late dry season (July–September), compared to the early dry (April–June). 31 

Evaluation of three monitoring scenarios showed that conducting surveys at times when 32 

detectability is highest can achieve a substantial improvement in the ability to detect declines, 33 

thus reducing the survey effort and costs. Our study highlights the need for careful 34 

consideration of survey design related to the ecology of a species, as it can lead to substantial 35 

cost savings and improved insight into species population change via monitoring.   36 

Keywords 37 

Imperfect detection; statistical power; Conilurus penicillatus; threatened species; optimal 38 

monitoring. 39 

Introduction 40 

The loss and fragmentation of natural habitats, introduction of non-native species and global 41 

climate change are driving declines in species distribution and abundance worldwide (Chapin 42 

III et al. 2000; Butchart et al. 2010; Barnosky et al. 2011). Effective conservation depends on 43 

the ability to detect population trends through reliable, effective and efficient monitoring 44 

programs (Reynolds et al. 2011). Ecological monitoring refers to the process of gathering 45 

information about an ecological variable (e.g. species distribution) at different points in time 46 

and space to assess change (Yoccoz et al. 2001). Despite their importance, monitoring 47 
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programs are often designed without regard for their ability to deliver the types of information 48 

required by land managers (Legg & Nagy 2006; Guillera-Arroita et al. 2010; Peel et al. 2015). 49 

Disregarding imperfect detection (when a given method does not detect a species where it 50 

occurs) can reduce the reliability of estimates of population trends, particularly when detection 51 

varies in space or time (MacKenzie et al. 2002; Field et al. 2005; Wintle et al. 2004). The 52 

purpose of monitoring programs differs from that of baseline surveys, which are largely 53 

designed to collect information on species distribution and richness (i.e. the number of distinct 54 

species that occur within a region). Baseline surveys may not be suitable for collecting the 55 

types of data required to infer population trends in some or all of the species they report on, but 56 

they do provide valuable data that can be used to inform monitoring programs. 57 

A useful variable in ecological monitoring is species occupancy (Holt et al. 2002), that 58 

is, the proportion of sites occupied by a species. Monitoring occupancy is typically cheaper 59 

and less technically demanding than measuring population abundance or density, which can be 60 

expensive to implement on large scales (Nimmo et al. 2015); consequently monitoring 61 

abundance may suffer from limited statistical power to detect change (Field et al. 2005), despite 62 

the available statistical methods to account for detectability (Borchers et al. 2012; Buckland et 63 

al. 1993; Royle 2004). Change in occupancy is considered an important measure of extinction 64 

risk, for example in the International Union for the Conservation of Nature (IUCN) Red List 65 

of Threatened Species (IUCN 2017). Occupancy methods that account for imperfect detection 66 

(MacKenzie et al. 2002) have been used for many large-scale monitoring programs, and 67 

applied across diverse taxa including mammals (Wibisono et al. 2011), birds (Royle and Kéry 68 

2007), reptiles (McGrath et al. 2015), amphibians (Petitot et al. 2014) and invertebrates 69 

(MacKenzie 2003).  70 

Inadequate survey design can lead to low statistical power to detect trends of interest 71 

(Guillera-Arroita & Lahoz-Monfort 2012). Key decisions in the design of occupancy surveys 72 
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include the total survey effort required to detect effect sizes of ecological relevance with 73 

confidence, when and where to monitor and how to allocate a survey budget, given the 74 

recognised trade-off between the effort applied at each given site (and thus the quality of site-75 

level data) (Mackenzie & Royle 2005; Bailey et al. 2007). One way to guide monitoring design 76 

decisions is to use existing data to inform the likely values of relevant system parameters. 77 

Based on these, the expected performance of alternative monitoring strategies in meeting the 78 

objectives of the monitoring program can be explored. 79 

In this study, we use existing baseline survey data and occupancy models to examine 80 

alternative monitoring strategies for a threatened species, the brush-tailed rabbit-rat Conilurus 81 

penicillatus (Gould 1842), in one of its last remaining safe–havens, the Tiwi Islands in northern 82 

Australia. Australia has suffered a remarkably high rate of mammal extinctions over the past 83 

two centuries (Woinarski et al. 2015), amounting to loss of at least 30 terrestrial mammals 84 

(Fisher et al. 2014). The Tiwi Islands are now one of the few areas in Australia to retain a 85 

complete pre-European assemblage of mammals, but recent evidence suggests that small 86 

mammal populations, including C. penicillatus, are in decline (Firth et al. 2006; Davies et al. 87 

2016). The distinct Tiwi Islands subspecies (C. penicillatus melibius) has also been highlighted 88 

as one of the 20 mammals most likely to go extinct in the next two decades (Geyle et al. 2018), 89 

suggesting that emergency action must be taken to improve its conservation status.  90 

We estimated the occupancy and detectability of C. penicillatus using a baseline dataset 91 

collected across the Tiwi Islands in 2000–2002. We then used this information to examine the 92 

statistical power of different monitoring strategies for detecting declines of relevance to IUCN 93 

Red Listing. We note here that the aim of this paper is not to make recommendations to the 94 

IUCN for listing or assessment, but to advise on how much monitoring effort is required to 95 

confidently detect a decline when one occurs. With this, we address in part the priority need to 96 

establish an appropriate monitoring program for this species (see Woinarski et al. 2017).  97 
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Methods 98 

Study area  99 

The Tiwi Islands comprise Melville (5788 km2) and Bathurst (1693 km2) islands, and are 100 

~20 km north of mainland northern Australia. Both islands have similar environments and 101 

experience a highly seasonal (wet–dry tropical monsoonal) climate (average rainfall of 1,860 102 

mm and 146 mm in the wet and dry seasons respectively) (Australian Bureau of Meteorology 103 

2015). Vegetation includes savanna woodland and open forest dominated by eucalypts 104 

Eucalyptus and Corymbia spp., with smaller areas of Melaleuca woodland, sedgeland, 105 

grassland, rainforest, mangrove and coastal dunes. Approximately 5% of the islands are 106 

covered in short–rotation Acacia mangium forestry plantations, mineral sand mining and urban 107 

areas (Richards et al. 2012).  108 

Study species 109 

Conilurus penicillatus is a semi–colonial, medium–sized (150 g) native rodent with a 110 

now patchy distribution in northern Australia and southern New Guinea (Firth et al. 2010). It 111 

is listed as Vulnerable under the IUCN Red List (Burbidge & Woinarski 2016), and under 112 

Australian (Environment Protection and Biodiversity Conservation Act, 1999) legislation. It is 113 

listed as Endangered under Northern Territory legislation (Northern Territory Parks & Wildlife 114 

Conservation Act, 2012). The species has suffered a dramatic range contraction, most likely in 115 

response to increases in the frequency, intensity and size of landscape fires, and a consequent 116 

simplification of vegetation structure (Firth et al. 2010), which may make them more 117 

susceptible to predation by feral cats and other predators (Davies et al. 2016; Woinarski et al. 118 

2011). Conilurus penicillatus mostly occurs in tall open eucalypt forests and woodlands that 119 

burn infrequently, with a sparse to moderate mid-storey and an under-storey of perennial 120 

grasses (of which the seeds and stems are primary diet items, Firth et al. 2005; Firth et al. 121 

2010). Breeding in C. penicillatus is seasonal, occurring over at least four months with 122 
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juveniles predominantly entering populations in the mid to late dry season (June–September) 123 

(Taylor and Horner 1971; Firth 2007).  124 

Survey data  125 

We used data collected as part of a larger baseline wildlife survey conducted in the early 126 

2000s (Firth et al. 2006). A total of 338 sites were sampled in native vegetation across the Tiwi 127 

Islands (223 sites on Melville Island and 115 on Bathurst Island) (Fig. 1). Each site was visited 128 

only once between 2000 and 2002. Approximately 53% of sites were sampled during the early 129 

dry (Apr–Jun) season, while 33% and 14% of sites were sampled during the late dry (Jul–Sep) 130 

and late wet (Jan–Mar) seasons respectively. No sampling took place during the early wet (Oct–131 

Dec) season. Sampling followed a protocol widely used across northern Australia (Woinarski 132 

& Ash 2002); each site consisted of a 50 × 50 m quadrat, and included twenty Elliott traps (33 133 

× 10 × 9 cm) distributed evenly around the perimeter, and one large cage trap (56 × 20 × 20 134 

cm) located at each corner (four in total), set for three consecutive nights and checked early 135 

each day. All individuals caught were released unmarked at the site of capture. The total 136 

number of individuals captured was recorded for each trapping night. Note that this sampling 137 

encompassed the entire known range of the subspecies C. p. melibius.  138 

Predictor variables 139 

We selected covariates for inclusion in our occupancy models based on environmental 140 

and other variables considered important for C. penicillatus, taken from published peer-141 

reviewed literature (in particular Firth et al. 2006a) (see Table 1 for a detailed description 142 

justifying the inclusion of each covariate). These included field-measured site characteristics 143 

and remotely-sensed variables (i.e. geospatial layers). We had reason to suspect that C. 144 

penicillatus detectability may vary seasonally (based on expert knowledge), and thus explored 145 

this by including “season” as a survey–specific covariate. We tested for collinearity between 146 

each of the predictor variables, finding no correlation coefficients larger than 0.7.  147 
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Occupancy–detectability analysis 148 

Single–species, single–season occupancy models (MacKenzie et al. 2002) were used to 149 

estimate occupancy and detection probabilities of C. penicillatus across the Tiwi Islands. We 150 

summarised survey data as binary detection/non-detection histories at each sampling site, 151 

considering each trapping night (here meaning the entire set of traps deployed at each site on 152 

each night) as one detection attempt. For reference, we first calculated the species’ “naïve 153 

occupancy” – the estimate of site occupancy disregarding imperfect detection (i.e. the 154 

proportion of sites with at least one detection across three trapping nights). We then fitted 155 

models (MacKenzie et al. 2002), which are formulated in terms of parameters !" and #"$ , where 156 

!"  (occupancy) is the probability that sampling site % is occupied by the species and #"$  157 

(detectability) is the probability of detecting the species at sampling site % during survey &, 158 

conditional upon its presence. In its basic formulation, the model structure assumes 159 

independence among sites and detections, no changes in the occupancy status of sites (i.e. a 160 

site is either occupied or empty across the whole survey period) and no false positive records. 161 

We first fitted a model assuming constant detection and occupancy probabilities ( null model) 162 

to the dataset. From the estimated detection probability and assuming independence, we 163 

calculated the probability of detecting the species at a presence site in at least one of the ' 164 

visits, as follows  #∗ = 1 −	(1 − #)/. This quantity therefore reflects species detectability 165 

given the cumulative effort applied to the site (Kéry 2002). We then extended our models to 166 

incorporate covariates (MacKenzie et al. 2002; 2006) for occupancy and detectability (Table 167 

1), to explore how these probabilities vary in response to different site characteristics. 168 

Covariates were related to these probabilities via a logit-link function; this way, the resulting 169 

models are effectively an extension of the traditional logistic regression model to account for 170 

imperfect detection.  171 
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We ran preliminary models to determine which covariates were likely to be good 172 

predictors of occupancy and detectability using a step-wise approach, where individual 173 

variables were dropped if considered unimportant (i.e. where confidence intervals overlapped 174 

zero), finding only two important predictors of detectability (season and fire frequency). We 175 

then fitted all possible models resulting from combinations of our chosen covariates:  (two for 176 

detectability and 10 for occupancy, leading to 4,096 models in total). We tested for non–linear 177 

relationships for two covariates, foliage projection cover (FPC) (in occupancy) and fire 178 

frequency (in occupancy and detectability). Preliminary results showed very little evidence of 179 

a non-linear relationship, so all models were fit with linear relationships.  180 

We used the Akaike Information Criterion (AIC) to rank and identify the best performing 181 

models for the observed dataset (Burnham and Anderson 2002). The fit of the most saturated 182 

model was assessed with a goodness-of-fit test based on parametric bootstrapping and three 183 

test statistics: Pearson’s chi-square, the sum of squared residuals (SSE) and the Freeman-Tukey 184 

chi-square. This method simulates datasets based upon a fitted model, refits the model and 185 

evaluates whether the observed frequency of histories has a reasonable chance of happening if 186 

the model assessed is assumed to be correct. We calculated Akaike weights (0",) for each 187 

model and summed the contributions of each covariate (i.e. the sum of the Akaike weights 188 

∑0") to provide an indication of which covariates had substantial support for explaining the 189 

observed data (but see Cade 2015). We conducted all analyses in R (R Development Core 190 

Team, 2014), fitting models within the maximum-likelihood framework of inference using the 191 

R-package ‘Unmarked’ (Fiske et al. 2010).  192 

Power analysis 193 

Using the methods outlined in Guillera-Arroita and Lahoz-Monfort (2012), we identified 194 

the survey effort requirements to detect C. penicillatus occupancy declines of different 195 

magnitudes with a given statistical power. These methods provide approximations (equation 1) 196 
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to calculate how the power of a given occupancy–detection study changes depending on the 197 

allocation of survey effort (i.e. number of sites and replicate visits), assuming a standard 198 

sampling design with k replicate surveys (here trap nights) carried out at 2 sampling sites, and 199 

constant probabilities of occupancy and detectability. The calculations assume that two datasets 200 

are collected (one at time 1 and one at time 2), analysed, and their estimated occupancy 201 

probabilities with associated uncertainties compared to assess whether there is evidence of a 202 

decline between these two times. The probability of observing a significant difference in 203 

occupancy (i.e. power), given a significance level 3, is 204 

4 = 1 − 5 = 61 −Φ7
89 :⁄ 	<=>: + =:: − (!> − !:)

	<=>: + =::
@A +Φ7

−89 :⁄ 	<=>: + =:: − (!> − !:)

	<=>: + =::
@ 205 

                                                                                                                                   Equation 1 206 

where !> and !: are the true underlying occupancy probabilities in the two times, Ф(C) is the 207 

cumulative distribution function for the standard normal distribution, zE :⁄  is the upper 1003⁄2-208 

percentage point for the standard normal distribution (e.g. 1.96 for α = 0.05), =": =209 

!"(1 − !" + G") 2"⁄ 	is the variance of the occupancy estimator, and F = (1 − # ∗210 

)/{# ∗ 	−'#(1 − #)/J>}. For convenience, hereafter we defined R to be the proportional 211 

difference in occupancy, so that !: = 	!>	(1 − L), with R > 0 representing a decline. For a 212 

given R, the power to detect the decline increases both as the number of sampling sites (S) and 213 

the number of repeat visits (k) increases.  214 

We applied equation 1 using the fitted estimates obtained for occupancy and detectability 215 

to explore the number of sampling sites required to achieve a given power for detecting changes 216 

in C. penicillatus occupancy. We set !> to the occupancy estimated as part of our analysis 217 

described above, and set !: to reflect three different magnitudes of decline (i.e. effect size) 218 

corresponding to IUCN Red List decline thresholds for threatened species based on rule A2c 219 

(a decline in the area of occupancy where the cause may not have ceased): 80%, 50% and 30% 220 
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declines over relevant time periods (in the case of C. penicillatus, 10 years, which is greater 221 

than three generations) (Burbidge & Woinarski 2016). We did not consider criterion A1 222 

(declines in area of occupancy where the cause of decline has ceased) because there is evidence 223 

to suggest some threatening processes are ongoing and could cause rapid declines in this 224 

species (Davies et al.2016; Woinarski et al. 2017).  225 

The calculations above assume the species is monitored twice: once at the beginning and 226 

once at the end of the period over which change is considered. More frequent monitoring will 227 

yield greater statistical power to detect the same decline, and simulations can be run to compute 228 

power for different survey designs (e.g. see Table 1 in Guillera-Arroita & Lahoz-Monfort 229 

2012). The calculations also assume independence in the occupancy status of sites across time 230 

steps. Accounting for dependence may lead to increased power to detect declines. Thus, by 231 

assuming independence, we are being conservative in our evaluation (i.e. power will be as 232 

indicated or greater; Appendix S2 in Guillera-Arroita & Lahoz-Monfort 2012). Where survey 233 

data across multiple seasons are available from the same sites (not the case in this study), multi-234 

season models can be fitted to parameterise probabilities of extinction and colonization that 235 

reflect the dependence in occupancy status of sites across time, and the information accounted 236 

for in sample size assessments (Popescu et al. 2012). This implies that future monitoring should 237 

continue sampling the same sites, which is unlikely to be the case here.  238 

For all of our analyses, we set alpha (α) to 0.2 and beta (β) to 0.8. Our rationale behind 239 

this choice is that it better reflects the ratio of Type I and Type II costs in threatened species 240 

conservation, where committing a Type II error (i.e. not detecting a decline when one has 241 

occurred) could have implications that ultimately lead to extinction. In contrast, the general 242 

0.05:0.8 convention assumes that the cost of making a Type I error is four times more important 243 

than the cost of making a type II error (for detailed reviews on setting alpha and beta values 244 
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see Di Stefano 2003). Sample code for the power analysis conducted in this study is available 245 

online as supplementary material in Guillera-Arroita & Lahoz-Monfort (2012). 246 

Monitoring scenarios 247 

We considered three different monitoring scenarios:  248 

In “Scenario A” the assumption is that monitoring will target C. penicillatus likely habitat, 249 

excluding the more marginal sites. To calculate average occupancy to inform survey design, 250 

we took the 200 sites with the highest probability of occupancy as determined by our best 251 

model (Table 1). This eliminated low probability sites (< 0.07 probability) that largely reflected 252 

habitats unlikely to be suitable for C. penicillatus; for example, treeless plains and mangrove 253 

forests (Firth et al. 2006a). This monitoring regime also assumes that surveys are conducted 254 

during the late dry season (July–September) when C. penicillatus detectability is highest, and 255 

therefore assumes a sampling effort of two repeat visits to each site (as this is sufficient for 256 

detecting C. penicillatus with >95% confidence, as discussed in the results section below). This 257 

is the monitoring regime that takes greatest account of the model results. Scenario B targets the 258 

same type of sites, but assumes surveys are conducted year round (i.e. the design assumes a 259 

level of detectability as averaged throughout the year, and thus assumes a sampling effort of 260 

four repeat visits to each site. Scenario C takes what may be considered a naïve approach in 261 

targeting a random selection of sites and conducting surveys all year round (i.e. detectability 262 

averaged throughout the year), effectively ignoring knowledge gained through the modelling 263 

process. Like Scenario B, Scenario C too assumes a sampling effort of four repeat visits to each 264 

site. Four nights were chosen as this reflects the current standards for sampling of small 265 

mammals across the Northern Territory (Gillespie et al. 2015), and thus would realistically be 266 

applied if one had not modelled pilot data to better inform monitoring (i.e. the conditions under 267 

Scenario A).  268 
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For these monitoring scenarios, we considered the extent of sampling required to detect 269 

changes relevant to IUCN conservation status categories (i.e. 30%, 50%, 80%) across two 270 

monitoring episodes, here assumed to be 10 years apart (i.e. matching the time period relevant 271 

to IUCN Criterion A). 272 

Monitoring costs 273 

We calculated the costs associated with conducting monitoring to detect declines in 274 

occupancy of differing magnitudes (corresponding to IUCN Red List Criteria) under each of 275 

the three monitoring scenarios described above. This includes the costs associated with 276 

equipment, bait for traps, travel and field assistant salaries (De Bondi et al. 2010; Garden et al. 277 

2007) (details of estimated expenditure can be found in Appendix S1). While we provide an 278 

estimate of equipment expenses, we focus on the costs required to implement ongoing 279 

monitoring under each scenario, including in our calculations only 10% of the initial equipment 280 

costs. This was considered appropriate to account for minor repairs and replacement associated 281 

with the ongoing use of equipment.  282 

Results 283 

Naïve occupancy (the proportion of sites with C. penicillatus detections) was 0.15. The 284 

null model (containing no covariates) estimated an occupancy of 0.18 (SE ± 0.02) and a 285 

detectability of 0.47 (SE ± 0.05) (per trapping night). No single model was clearly superior in 286 

explaining patterns of occupancy and detectability (Table 2). Island, canopy height, canopy 287 

cover, fire impact, distance to nearest watercourse, mean rainfall and foliage projection cover 288 

were all important predictors (Table 2), featuring in all the top candidate models (those within 289 

4 AIC units of the best fitting model); the only exception was fire impact which was absent 290 

from the last top ranked model. All the variables considered important predictors of occupancy 291 

had a summed Akaike weight ≥93% (Appendix S2). Basal area of large trees, fire frequency 292 

and total grass cover only featured in some of the competing models as explanatory variables 293 
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for the variation in observed occupancy, but had little support (summed Akaike weights ≤36%, 294 

Appendix S2). Both season and fire frequency had high support for explaining variation in 295 

detectability, featuring in all top ranked models (Table 2) and with summed Akaike weights 296 

>99% (Appendix S2). The overall direction and effect size of the estimated relationships 297 

(regression coefficients) remained similar for each of the covariates across all top ranked 298 

models (Appendix S3). Therefore, we focus on the top ranked model as an explanation for the 299 

observed data. The model suggests that the probability of C. penicillatus occupying a site 300 

increases with canopy height, distance from nearest watercourse, foliage projection cover and 301 

mean annual rainfall, and decreases with canopy cover, increasing fire impact and Island (with 302 

occupancy lower on Bathurst Island) (Fig. 2a). 303 

We found that detectability varied seasonally (Fig. 2b), with nightly detection probabilities 304 

much higher in the late dry season (July–September), 0.78 (SE±0.02), compared to the early 305 

dry (Apr–June), 0.26 (SE±0.08), or late wet (January–March), 0.31 (SE±0.08). This suggests 306 

that surveys conducted in the late dry season would require far less effort (i.e. fewer repeat 307 

visits) to ensure high certainty that C. penicillatus is detected when present (Fig. 3).  308 

We calculated the number of survey sites required for detecting declines of 30, 50 and 309 

80% in C. penicillatus occupancy under each monitoring scenario (Fig. 4). Our results show 310 

that fewer sites and visits were required under Scenario A compared with Scenario B, and less 311 

than half the number of sites were required under Scenario A compared with Scenario C to 312 

detect declines corresponding to each IUCN threatened category (Vulnerable, Endangered and 313 

Critically Endangered) (see Fig. 4 and Appendix S4). 314 

The relative costs associated with the ability to detect declines corresponding to each 315 

IUCN threatened category (Vulnerable, Endangered and Critically Endangered) for all 316 

monitoring scenarios are outlined in Table 3. Scenario A is the most cost-effective method for 317 

detecting declines of a magnitude great enough to nominally qualify C. penicillatus for a 318 
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threatened (or more threatened) status, saving approximately $11 700, $40 500 and $123 200 319 

compared with Scenario B and approximately $46 800, $150 200 and $467 800 compared with 320 

Scenario C (for allocation of Critically Endangered, Endangered and Vulnerable threat 321 

categories respectively) (Table 3).  322 

Discussion 323 

Monitoring is a critical component of threatened species conservation, but requires 324 

sufficient power to detect and reliably estimate population trends (Guillera-Arroita and Lahoz-325 

Monfort 2012). We show how a quantitative assessment of statistical power based on existing 326 

data can inform the design of monitoring to ultimately improve our ability to detect policy–327 

relevant species’ declines.  328 

We found that detectability for C. penicillatus is reasonably high (0.45 on average per 329 

trapping night), but varies greatly throughout the year: detection rates in the late dry season 330 

were three times higher than in the early dry (0.78 compared to 0.26). Although seasonal 331 

variability in detection of wildlife is well known for other taxa and generally considered in the 332 

timing of surveys, for example in butterflies (Pellet 2008), burrowing owls (Latif et al. 2012), 333 

bats in maternity caves (Baudinette et al.1994), and amphibians (Sewell et al. 2010), there is 334 

little evidence in the literature to suggest that such variability has been considered when 335 

monitoring mammals in a tropical climate. In highly seasonal environments (i.e. those closer 336 

to the poles), seasonal changes (and subsequent changes in detectability) are more obvious, 337 

particularly for species that hibernate (i.e. mountain pygmy possums, Geiser & Broome 1991) 338 

or go into torpor (i.e. bats, Geiser & Brigham 2000). Here we show that explicit consideration 339 

of monitoring design, based on seasonal variability, can be critical, even in contexts where 340 

seasonality and changes in temperature are less apparent (i.e. in areas closer to the equator). 341 

Our findings have strong implications for the cost–effectiveness of monitoring and 342 

management of C. penicillatus, and potentially other threatened taxa with similar ecologies and 343 
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life history characteristics in seasonal environments. They also demonstrate the need to account 344 

for imperfect detection when analysing survey data, as otherwise, declines may be masked or 345 

exaggerated by seasonal inconsistency in sampling and seasonal variation in detectability. 346 

Several factors could explain the higher probability of detection during the late dry 347 

season compared with the early dry season. Food resources are more abundant during the early 348 

dry season (related to plant productivity following wet conditions), potentially reducing the 349 

chance of an individual entering a trap in search of bait. Seasonal variation may also relate to 350 

C. penicillatus breeding patterns; high numbers of juveniles at the end of the dry season may 351 

result in higher trap success due to increased relative abundance and/or inexperienced, less 352 

cautious individuals. Conilurus penicillatus is just one example of a species displaying strong 353 

seasonal breeding cycles – it can be expected of other rodents and some dasyurids (i.e. the 354 

northern quoll Dasyurus hallucatus) – highlighting the importance of accounting for this when 355 

examining population trends.  356 

The most important variables driving occupancy of C. penicillatus (canopy height, 357 

canopy cover, fire impact and distance to nearest watercourse) were consistent with a previous 358 

analysis of this dataset (Firth et al. 2006a). This species shows a preference for eucalypt forests 359 

with taller trees, less intense fire and drier upland areas. While fire is thought to influence the 360 

occupancy of C. penicillatus, the results of this study were somewhat equivocal. Fire frequency 361 

was not a strong predictor for occupancy, while fire impact – a field-based measure of the 362 

apparent severity of fire – had greater support, and was negatively correlated with occupancy. 363 

Firth et. al. (2010) found that late dry season fires contribute to a reduction in both juvenile and 364 

adult survival probabilities in C. penicillatus due to a greater impact on vegetation cover and 365 

the loss of important resources such as den sites (i.e. logs). Similarly, McDonald et al. (2016) 366 

concluded that fire is an important driver of grass cover, which influences the occupancy 367 

patterns of another rare rodent (the critically endangered central rock-rat Zyzomys 368 
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pedunculatus). This outcome suggests recent severe fire events are shaping C. penicillatus 369 

occupancy rather than the number of fires that have occurred over time. More intense fire may 370 

lead to lower perennial grass species diversity, and thus a reduction in the availability and 371 

variety of seed (Russell-Smith et al. 2000). Fire impacts may also be synergistic with other 372 

potential causes of declines, such as predation by feral cats, with cat abundance and hunting 373 

efficiency shown to increase in areas that have been subject to recent intensive fires in other 374 

comparable environments in northern Australia (McGregor et al. 2014; Leahy et al. 2015; 375 

Davies et al. 2016). 376 

The power to detect population trends can be improved by increasing sampling effort, 377 

but there are always financial and logistical constraints limiting the effort that can be applied 378 

to a particular monitoring program. Alternative methods have been proposed for improving 379 

power; one example is excluding sites with a low probability of occupancy (Rhodes et al. 380 

2006). This approach is explored in this study, where we considered a strategy that targeted 381 

sites with a probability of C. penicillatus occupancy greater than 7%, therefore focusing our 382 

inference on declines in its core distribution. Our results show that to detect smaller 383 

proportional changes in occupancy (<50%), a substantial improvement in power can be 384 

achieved by targeting suitable habitats, reducing the survey effort (and thus costs) required to 385 

detect declines. Conducting sampling when detectability is highest improves power and 386 

reduces costs further. Species’ presence can be inferred with high confidence in two repeat 387 

visits when monitoring is conducted during the late dry season, while four times as many visits 388 

are necessary to infer the same level of confidence in the early dry season.  389 

One note of caution is that, in assessing the power to detect a decline, we are identifying 390 

the ability to detect that there is a decline, but this does not necessarily imply that the true 391 

magnitude of that decline is estimated. For example, a power of 0.8 for detecting a decline of 392 

30% between two sampling times indicates that, given there is a true decline of 30%, there is 393 
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80% chance that the statistical analysis of the data identifies a decline greater than 0. The 394 

estimated decline may be smaller than the true decline, and may be insufficient to allocate to a 395 

threatened category. One can formulate a more stringent null hypothesis to guide the survey 396 

design. For example, we could design the sampling to ensure there is high power to estimate a 397 

decline greater than X, when the true decline is Y, but this naturally leads to greater sample 398 

size requirements (Guillera-Arroita and Lahoz-Monfort 2012). Note however that one cannot 399 

set X=Y, as this would require an infinite sample size (to obtain an estimate of the truth with 400 

no uncertainty).  401 

Another important consideration is that as a species declines, its detectability may also 402 

decline, thus leading to greater difficulty in detecting a change between sampling occasions. 403 

Conilurus penicillatus has declined on the Tiwi Islands in the last 15 years, attributed primarily 404 

to predation by feral cats (most likely a consequent result of changing fire regimes and 405 

associated impacts on vegetation cover). On Melville Island, it is now restricted to areas with 406 

low probabilities of cat occupancy and high shrub density, where predation effects are thought 407 

to be effectively diminished (Davies et al. 2016). Trap success in 2015 was less than a third of 408 

that reported in monitoring conducted in 2000–2002 (Davies et al. 2016), suggesting that the 409 

species is likely to have lower probabilities of both occupancy and detectability across the 410 

Island. In light of new data we must recognise that there is a possibility that two trap nights, 411 

sampled during the late dry season when detectability of this species is highest, may now be 412 

insufficient for obtaining high (>95%) confidence in detection.  413 

If one has reason to suspect that a decline has occurred between two samples, then 414 

sampling design may benefit from calculating power against different levels of detectability 415 

during the early stages of survey design. This would allow for a more conservative approach 416 

to be developed that can meet the project objectives in the event of a decrease in detectability 417 

between sampling occasions. In the context of C. penicillatus, implementing alternative trap 418 
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methods could overcome limitations associated with decreasing detectability through time. 419 

Motion-sensor cameras are a non-invasive survey tool that have been successfully used for 420 

several mammals of varying sizes (Rendell et al. 2014; Mcdonald et al. 2015; Welbourne et al. 421 

2015), including C. penicillatus (Davies et al. 2016). Once deployed, cameras may be left in 422 

the field for long durations of time, thus collecting data across a greater temporal scale with 423 

fewer resources (DeBondi et al. 2011). The data obtained from cameras can be analysed in a 424 

similar way to provide insights into survey design and power to detect change (Davies et al. 425 

2016).  426 

Designing an effective monitoring program will depend upon the objectives of the study, 427 

however, if practitioners are interested in detecting a decline of magnitude great enough for 428 

allocation to a “threatened” category (Vulnerable, Endangered, Critically Endangered), then 429 

implementing a monitoring regime capable of detecting smaller declines (i.e. ≤30%) within an 430 

allocated budget would be ideal. As we have shown here, detecting a larger decline requires 431 

less resources than detecting a small decline, so designing a monitoring regime that is capable 432 

of detecting smaller declines will lead to increased confidence in our ability to detect more 433 

catastrophic declines (i.e. >50%).  434 

However, land practitioners must also consider the scale and frequency at which 435 

monitoring takes place. The IUCN Red List Criteria applies to declines across a species’ entire 436 

distribution, and is generally applied at the species level. Though the population of C. 437 

penicillatus on the Tiwi Islands is considered a distinct subspecies (C. p. melibius, Thomas 438 

1921; Kemper and Schmitt 1992), a reported decline in this population alone would not be 439 

sufficient to upgrade its’ conservation status at the species level. A recent study (Geyle et al. 440 

2018) identifying the Australian mammals most likely to go extinct in the next two decades, 441 

placed both Australian subspecies (C. p. melibius and the mainland C. p. penicillatus) in the 442 

top 20 mammals most at risk. This suggests that each may require emergency intervention to 443 
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ensure their ongoing survival. Gaining an understanding of population trends for both 444 

subspecies is thus crucial if we’re to improve the conservation outlook for these species. 445 

The frequency in which monitoring occurs is also important. In this case, we have used 446 

a 10-year interval, as it is related to the generation time for which a decline must occur for a 447 

species to be eligible for conservation status assessment. However, in practise, if monitoring 448 

occurs more frequently, there is more likelihood of detecting a decline in a time-sensitive 449 

manner, and subsequently managers will be able to respond more effectively and rapidly to the 450 

threats driving such declines. 451 

Despite some limitations of our approach, power analyses provide important insight into 452 

whether a study is worth conducting by identifying if the change considered meaningful can 453 

be detected with reasonable probability using an affordable sample size. Power analysis is an 454 

important tool in the development of effective monitoring regimes capable of achieving the 455 

desired study outcomes (Guillera-Arroita & Lahoz-Monfort 2012). We show how existing data 456 

can be used to estimate parameters required to determine sample sizes and monitoring design, 457 

and thus provide powerful insights into the effectiveness of existing monitoring methods at 458 

achieving different research and management goals. Our findings demonstrate that a targeted 459 

single–species monitoring protocol has greater power to detect declines for C. penicillatus than 460 

a design targeted at multiple species. However, we recognise that in many cases, particularly 461 

at large spatial scales, single–species monitoring is often impractical and may be inefficient. 462 

For example, the Tiwi Islands are home to many threatened species that have suffered 463 

widespread declines across northern Australia. Future research should explore ways to optimise 464 

power for detecting simultaneous declines in multiple threatened species to ensure better use 465 

of resources, especially given the sudden collapse of a wide range of small mammal species in 466 

Kakadu National Park on the adjacent mainland in recent decades (Woinarski et al. 2010). We 467 

suggest targeting several species with similar ecological needs, habitat preferences and life 468 



 

20 
 

history characteristics, as this study highlights the importance of targeting particular sites based 469 

upon the local habitat characteristics present and seasonal fluctuations in detectability.  470 

Monitoring programs that detect a change in abundance or occupancy, while of great 471 

importance, simply identify the problem, which is only one of the steps contributing to 472 

threatened species conservation. Ideally, monitoring programs should provide some insight 473 

into the potential causes of such change, and designs should thus synchronously include site 474 

level consideration of the putative threatening factors (Lindenmayer et al. 2012). As 475 

demonstrated here, good sampling design can provide information not only on trends but also 476 

on factors influencing those trends. In this case, our analysis indicates that fire regimes are 477 

associated with variation among site occupancy, and hence may be contributing to the observed 478 

pattern of decline. Such careful consideration of survey design will ultimately lead to a far 479 

greater level of confidence in our ability to detect declines, and understand the reasons for 480 

them, which in turn may lead to more informed and better conservation outcomes.  481 
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Table 1. Occupancy predictors considered for inclusion in single–season, single–species 700 

occupancy models of Conilurus penicillatus on the Tiwi Islands. 701 

Predictor Justification for inclusion Measurement Reference(s) 

Canopy height An indicator of habitat 
suitability 

Height of tallest woody 
plants 

Firth et al. 2006a 

Canopy cover An indicator of habitat 
suitability  

Percentage foliage cover of 
canopy 

Firth et al. 2006a 

Mean annual 
rainfall 

An indicator of productivity Mean average rainfall in 10 
years preceding survey, 
derived for BOM gridded 
data 

J. Woinarski, pers 
obs 

Total grass 
cover 

An indicator of potential 
food availability 

Percentage ground cover of 
grass (annual and 
perennial) 

Firth et. al. 2005; 
Firth et al. 2006a; 
Firth et al. 2010  

Fire impact Fire impact may have a 
strong influence on critical 
resources required for 
species survival (i.e. food 
availability, hollow logs) 

Five-point scale measuring 
the apparent severity of fire 
impact, from 1 (no sign of 
fire) to 5 (evidence of 
severe crown fire) 

Firth et al. 2010; 
Firth et al. 2006b; 
Woinarski et al. 
2011; Yates et al. 
2008 

Fire frequency  See above   The number of times a site 
has burnt in the four years 
preceding survey. Derived 
from Landsat satellite 
imagery 

See above 

Distance to 
nearest 
watercourse 

A highly significant finding 
in previous analysis across 
all quadrats, indicative of 
variation in habitat 

Measure in metres. Derived 
from a digital elevation 
model 

Firth et. al. 2006a 

Foliage 
projection cover 

An indicator of habitat 
suitability 

The percentage of the site 
occupied by the vertical 
projection of foliage or 
measure of green 
vegetation on the ground. 
Derived from Landsat TM 
satellite imagery 

Walker and Hopkins 
1990 

Basal area of 
large trees 

An indicator of a critical 
resource (i.e. hollows – 

Total basal area (m2 ha-1) of 
trees with diameter at 
breast height > 50 cm 

Firth et. al. 2006a & 
b; Bennett et al. 
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702 

more likely to be present in 
larger trees) 

Derived from two sweeps 
of bitterlich gauge 

1993; Whitford 2002; 
Woolley et al. 2018 

Island A surrogate for the overall 
population size (due to area 
of habitat) and related meta-
population dynamics, 
differences between 
disturbance histories, 
predator densities and 
composition of vegetation 

155 sites on Bathurst Island 
and 223 on Melville Island. 
Modelled as a binary 
predictor 
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Table 2. Akaike information criterion, mean occupancy and mean detectability estimates for the candidate set of single–season occupancy models 703 

for Conilurus penicillatus on the Tiwi Islands of the Northern Territory. The null model outputs are provided for comparison. 704 

 
AIC = Akaike Information Criterion, ∆AIC = Akaike unit difference, Wi = Akaike weight, ! = mean probability of occupancy, " = mean probability of detection, SE = standard 705 

error, CI = confidence intervals, S = season, FF = fire frequency, BA = basal area of large trees, IS = island, CH = canopy height, CC = canopy cover, FI = fire impact, DW = 706 

distance to watercourse, RF = mean rainfall, GC = total grass cover and FC = foliar projection cover. 707 

Occupancy Detectability 

ID Candidate models AIC ∆AIC Wi #  (±SE) CI $ (±SE) CI 

1 p (S+FF) Ψ (IS+CH+CC+FI+DW+RF+FC) 426.38 0.00 0.22 0.24 (0.07) 0.13 0.34 0.45 (0.07) 0.31 0.59 

2 p (S+FF) Ψ (IS+CH+CC+FI+DW+ RF+GC+FC) 426.48 0.01 0.21 0.25 (0.07) 0.13 0.41 0.44 (0.07) 0.30 0.58 

3 p (S+FF) Ψ (BA+IS+CH+CC+FI+DW+RF+GC+FC) 427.77 1.40 0.11 0.25 (0.07) 0.12 0.42 0.44 (0.07) 0.30 0.58 

4 p (S+FF) Ψ (BA+IS+CH+CC+FI+DW+RF+FC) 427.82 1.44 0.11 0.24 (0.07) 0.13 0.40 0.45 (0.07) 0.31 0.59 

5 p (S+FF) Ψ (IS+CH+CC+FI+FF+DW+RF+FC) 428.28 1.90 0.08 0.24 (0.07) 0.12 0.40 0.45 (0.08) 0.31 0.59 

6 p (S+FF) Ψ (IS+CH+CC+FI+FF+DW+RF+TC+FC) 428.40 2.09 0.08 0.25 (0.08) 0.12 0.42 0.44 (0.08) 0.30 0.58 

7 p (S+FF) Ψ (IS+CH+CC+FI+DW+RF+TC) 429.25 2.87 0.05 0.25 (0.07) 0.13 0.40 0.44 (0.08) 0.29 0.58 

8 p (S+FF) Ψ (BA+IS+CH+CC+FI+FF+DW+RF+TC+FC) 429.77 3.39 0.04 0.25 (0.08) 0.11 0.43 0.44 (0.08) 0.30 0.58 

9 p (S+FF) Ψ (BA+IS+CH+CC+FI+FF+DW+RF+FC) 429.81 3.42 0.04 0.24 (0.07) 0.11 0.41 0.45 (0.07) 0.30 0.59 

10 p (S+FF) Ψ (IS+BA+CH+CC+FI+FF+DW+RF+GC) 429.84 3.45 0.04 0.25 (0.07) 0.13 0.41 0.44 (0.08) 0.29 0.58 

11 p (S+FF) Ψ (IS+CH+CC+DW+RF+TC+FC) 430.12 3.74 0.03 0.26 (0.08) 0.13 0.43 0.42 (0.07) 0.29 0.56 

Null P (.)  Ψ (.) 496.20 NA NA 0.18 (0.02) 0.14 0.23 0.47 (0.05) 0.37 0.57 
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Table 3. Costs associated with our ability to detect declines of varying magnitude in Conilurus 708 

penicillatus occupancy under the three differing monitoring Scenarios: (A) core sites surveyed 709 

when detectability is highest (late dry season), assuming two repeat visits to a trap site; (B) 710 

core sites surveyed across the year (i.e. average detectability), assuming four repeat visits to a 711 

trap site; and (C) random selection of sites sampled across the year, assuming four repeat visits 712 

to a trap site. Scenario C takes no account of the information provided by the model. Costs are 713 

based on the estimated expenditure described in Appendix S1, and the number of sites required 714 

for allocation of each threatened category (Appendix S4). 715 

 
 
 
 

 

 

 

 

 

 Costs (AU$) 

Proportional decline in occupancy A B C 

30% 265,356 388,515 733,130 

50% 86,814 127,310 237,060 

80% 27,846 39,510 74,630 
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Figure 1. The location of the Tiwi Islands and all sites sampled during 2000–2002 across 716 

Bathurst and Melville Islands. 717 
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Figure 2. Standardised regression coefficients (with 95% confidence intervals) for the best 718 

model predictors of Conilurus penicillatus (a) occupancy and (b) detectability. 719 

(a) 

(b) 
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Figure 3. The probability of detecting Conilurus penicillatus in the early dry season, late dry 720 

season and late wet season, assuming a mean value of fire frequency. 721 

 

Figure 4. The number of sampling sites required to achieve a statistical power of 0.8 to detect 722 

change when Conilurus penicillatus occupancy has declined by 30, 50 or 80%. These 723 

declines correspond to IUCN Red List criteria for allocation of Vulnerable (VU), Endangered 724 

(EN) and Critically Endangered (CR) conservation status. Three monitoring scenarios are 725 
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considered: (A) core sites surveyed when detectability is highest (late dry season), given two 726 

repeat visits to a trap site; (B) core sites surveyed across the year (i.e. average detectability), 727 

given four repeat visits to a trap site; and (C) random selection of sites sampled across the 728 

year, given four repeat visits to a trap site. Scenario C takes no account of the information 729 

provided by the model. 730 
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Appendices  

Appendix S1. Estimated costs associated with monitoring Conilurus penicillatus on the Tiwi 

Islands. Total cost per site is estimated based on ongoing monitoring costs (i.e. 10% of 

expenditure for initial purchase of equipment) bait, travel and personnel expenses. The totals 

in the far right column represent costs associated with visiting a site for four consecutive nights 

– or 8 trips in total (required of Scenarios B and C). The total cost per site for Scenario A takes 

100% of ongoing monitoring costs and 50% of bait, travel and personnel costs (i.e. the costs 

associated with visiting a site for two consecutive nights – or 4 trips in total). Note: all values 

are rounded to the nearest whole number.  

 

Item description Quantity Unit cost Total cost ($AU) 

Vehicle transport by barge  
Elliott traps 
Cage traps        
Ongoing monitoring costs (10%)  

4 x trips 
200 
40 
 

$600 
$40 
$70 
 

$2,400 
$8,000 
$2,800 
$1,080 

Bait Oats 
Honey 
Peanut butter 

2,000 g 
500 g 
500 g 

$1 (750 g) 
$36 (3 kg) 
$36 (2 kg) 

$18 

Travel  
 

University car 
hire 

Average distance  
(41 km) x 8 trips  

$60 per 100 km $197 

Personnel Wages 7.5 hrs × 2 staff  $60 per hour 
(including on-
costs) 

$900 

Total cost per site (Scenario A)  $1,638 

Total cost per site (Scenario B & C)  $2,195 
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Appendix S2. The summed Akaike weights for each occupancy and detectability covariate 

corresponding to the candidate set of single–season occupancy models in Table 1. 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Occupancy (!) 

Island > 99% 

Basal area of large trees 30% 

Canopy height > 99% 

Canopy cover > 99% 

Fire frequency  28% 

Fire impact 98% 

Distance to watercourse >99%% 

Mean annual rainfall > 99% 

Total grass cover 36% 

Foliage projection cover 93% 

Detectability (") 

Season > 99% 

Fire frequency  > 99% 



 

40 
 

Appendix S3. Standardised coefficient and confidence interval graphs for the first 5 candidate 

models (i.e. within 2 Akaike unit difference) (Table 2), demonstrating that the overall direction 

and effect size of estimated relationships remained similar across all top ranked models.  
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Appendix S4. The number of sites required to detect declines of varying magnitudes (30, 50 

and 80%), corresponding to IUCN Red List criteria for allocation of Vulnerable, Endangered 

and Critically Endangered threat status under each of the three Scenarios (A, B and C, detailed 

in the main text), given two repeat visits to each site for Scenario A and four repeat visits to 

each site for Scenarios B and C. Power (β) = 0.8 and alpha (α) = 0.2. 

 

 

 Number of Sites 

Proportional decline in occupancy A B C 

30% 162 177 334 

50% 53 58 108 

80% 17 18 34 


