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Abstract:  26 

Australia has contributed a disproportionate number of the world’s mammal extinctions over the past 27 

200 years, with the greatest loss of species occurring through the continent’s southern and central arid 28 

regions. Many taxonomically and ecologically similar species are now undergoing widespread decline 29 

across the northern Australian mainland, possibly driven by predation by feral cats and changed fire 30 

regimes. Here we report marked recent declines of native mammal species in one of Australia’s few 31 
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remaining areas that support an intact mammal assemblage, Melville Island, the largest island off the 32 

northern Australian coast. We have previously reported a marked decline on Melville Island of the 33 

threatened brush-tailed rabbit rat (Conilurus penicillatus) over the period 2000 to 2015, linked to 34 

predation by feral cats. We now report a 62% reduction in small mammal trap-success and a 36% 35 

reduction in site-level species richness over this period. There was a decrease in trap-success of 90% 36 

for the northern brown bandicoot (Isoodon macrourus), 64% for the brush-tailed rabbit-rat and 63% 37 

for the black-footed tree-rat (Mesembriomys gouldii), but no decline for the common brushtail possum 38 

(Trichosurus vulpecula). These results suggest that populations of native mammals on Melville Island 39 

are exhibiting similar patterns of decline to those recorded in Kakadu National Park two decades 40 

earlier, and across the northern Australian mainland more generally. Without the implementation of 41 

effective management actions, these species are likely to be lost from one of their last remaining 42 

strongholds, threatening to increase Australia’s already disproportionate contribution to global 43 

mammal extinctions. 44 

Keywords: Threatened mammals, extinction, refuge, northern Australia 45 

Introduction:  46 

Australia has experienced the highest number and proportion of mammal extinctions of any continent 47 

over the past two centuries (IUCN, 1996), having lost around 10% of its native mammal species 48 

(Short et al., 2002, Woinarski et al., 2014). While most of these mammal extinctions occurred from 49 

the mid 19th to early 20th Centuries and were concentrated in the southern and arid parts of Australia, 50 

over the past three decades severe declines have occurred further north in the monsoonal tropics 51 

(Woinarski et al., 2001, Woinarski et al., 2010). Given that the current decline of mammals in 52 

northern Australia is most evident in taxa similar to those driven to extinction and severe decline 53 

elsewhere in Australia (e.g. bandicoots, large rodents and dasyurids in the ‘critical weight range’ 54 

(CWR) of 35–5500 g) (Burbidge and McKenzie, 1989, Woinarski et al., 2010, Murphy and Davies, 55 

2014), similar factors may be responsible. There is compelling evidence that predation by the 56 

introduced red fox (Vulpes vulpes) and feral cat (Felis catus) was the driver of decline and extinction 57 

of many mammal species in temperate, arid and semi-arid Australia (Johnson, 2006, Hardman et al., 58 

2016, Short, 2016). Red foxes do not occur in monsoonal Australia, but the feral cat has been present 59 

across the northern Australian mainland since the 19th Century (Abbott, 2002, Abbott, 2008). 60 

There is accumulating evidence that predation by feral cats is a key factor in the current declines 61 

across northern Australia. Recent studies have demonstrated extirpations of some native mammal 62 

species on islands recently colonised by cats, but persistence on islands without cats, with this pattern 63 

especially strong for mammal species that have declined extensively across mainland areas (Southgate 64 

et al., 1996, Woinarski et al., 1999, Woinarski et al., 2011b). An experimental reintroduction of the 65 

long-haired rat (Rattus villosissimus) on the northern Australian mainland failed outside predator 66 
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exclosure areas, due primarily to predation by feral cats (Frank et al., 2014). At another mainland site, 67 

Leahy et al. (2016) demonstrated that predation by feral cats and dingoes (Canis dingo) was the 68 

primary cause of local population declines of two native mammal species over the 12-month study 69 

period. Fire was also a significant factor, but its influence was not through direct fire-related 70 

mortality, nor fire-induced reductions in food availability or reproductive success, or emigration. 71 

Rather, the influence of fire was related to cat predation, the effects of which were most severe in 72 

areas subject to high-intensity fire that removed a greater proportion of vegetation cover (Leahy et al., 73 

2016). The synergistic relationship between fire and predation was further supported by McGregor et 74 

al. (2016), who demonstrated that feral cats concentrated their hunting activity to areas recently burnt 75 

by high-intensity fires. 76 

Despite the accumulating evidence that predation by feral cats is a key factor in the current declines 77 

across northern Australia, the apparent asynchrony between the establishment of the feral cat in 78 

monsoonal northern Australia and the late 20th Century mammal declines, suggests other factors may 79 

be involved. Frequent, high-intensity fires, such as those characterising the fire regime across northern 80 

Australia since the breakdown of traditional Aboriginal burning practices, significantly alter the 81 

availability of critical resources, including fleshy-fruit bearing shrubs, logs and tree hollows (Russell-82 

Smith et al., 2003b, Vigilante and Bowman, 2004, Firth et al., 2006b, Woinarski and Westaway, 83 

2008). Any species with a strong reliance on such resources may be strongly disadvantaged by current 84 

northern Australian fire regimes, even in the absence of predation. However, species that are both 85 

dependent on these fire-mediated resources and also susceptible to predation are likely to be 86 

particularly threatened, and expected to be the first to exhibit decline and range contraction.  87 

Predation by feral cats and frequent high-intensity fire both occur throughout far northern Australia, 88 

and therefore are potential threats to areas that currently still retain their full mammalian fauna. One 89 

such area is Australia's second-largest island, Melville Island, where the threatened brush-tailed 90 

rabbit-rat (Conilurus penicillatus) has recently contracted to areas where feral cats were rarely 91 

detected and shrub density was high (Davies et al. 2016). Here we build on that study by investigating 92 

changes in the broader mammal assemblage on Melville Island, which includes many species that 93 

have declined extensively across mainland northern Australia (Firth et al., 2006a, Woinarski et al., 94 

2010, Firth et al., 2010) and several endemic subspecies. We predict that: (1) a range of native 95 

mammals on Melville Island, and not just the brush-tailed rabbit-rat, will be in decline; (2) declines 96 

will be most evident in those species that have declined most dramatically on the mainland; (3) the 97 

current distribution of small mammals on Melville Island will be inversely related to the presence of 98 

feral cats and frequent fire. 99 

 100 

Methods: 101 
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Study site: 102 

Melville Island (5788 km2) is the larger of the two main Tiwi Islands, located ~20 km off the coast of 103 

Australia’s Northern Territory (Figure 1). The Tiwi Islands became separated from mainland 104 

Australia relatively recently (between 12,000 and 8,000 years ago) (Woodroffe et al., 1992), and 105 

hence have an environment and a mammal assemblage largely comparable to the mainland (with the 106 

notable absence of the northern quoll (Dasyurus hallucatus). The islands are of low relief (≤ 103 m 107 

above sea level) and experience a tropical monsoonal climate with an intense wet season (November–108 

April) in which over 90% of the annual rainfall occurs. There is a substantial rainfall gradient on 109 

Melville Island, from 1400 mm in the east, to 2000 mm in the northwest. The major vegetation types 110 

are savanna woodlands and open forests dominated by Eucalyptus miniata, E. tetrodonta and 111 

Corymbia nesophila, with a predominantly grassy understorey. Shrub density is highly variable, and 112 

studies on the mainland have shown that it is negatively affected by frequent, high-intensity fires 113 

(Russell-Smith et al., 2003a, Woinarski et al., 2004). Fire mapping of the Tiwi Islands, has shown that 114 

an average of 54% of the savannas were burnt each year from 2000-2013, with 65% of this area 115 

burning in the late dry season (Richards et al., 2015).  116 

There is currently no evidence to suggest any recent change in fire intensity or frequency, feral animal 117 

densities or invasive weeds on the Tiwi Islands (see Woinarski et al. (2001) for further details on 118 

introduced species). Over the past two decades, the expansion of the forestry industry across the 119 

western half of Melville Island, has seen the replacement of around 30,000 ha of eucalypt tall open 120 

forest with short-rotation plantations of exotic Acacia mangium (Woinarski and Tiwi Land Council, 121 

2001). Due to a lack of historical records (Abbott and Burbidge, 1995), the timing of the arrival of 122 

feral cats on Melville Island is unknown. While cats could have arrived as far back as the 123 

establishment of a British military outpost at Fort Dundas in 1824 (Brocklehurst, 1998), they also 124 

could have arrived appreciably later than in other parts of northern Australia (Davies et al. 2016). 125 

 126 

Data collection: 127 

From 2000–2002, small to medium-sized, non-flying mammals were sampled systematically at 351 128 

sites as part of a general wildlife survey of the Tiwi Islands. These surveys involved a 50 × 50 m 129 

quadrat with 20 Elliott traps (33 × 10 × 9 cm) spaced equidistantly around the perimeter with one cage 130 

trap (56 × 20 × 20 cm) located on each of the four corners. Traps were baited with a mixture of peanut 131 

butter, oats and honey, and set for three consecutive nights. Four pitfall traps (two 20 L and two 10 L 132 

plastic buckets, each with 10 m of 30 cm high drift-line fence) were also used at each site over the 3-133 

day sampling period. Additionally, five 10-minute searches (two at night using spotlights and three 134 

during daylight hours) were conducted at each site. 135 
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Between April and December 2015, 88 of the original 351 sites were revisited (Davies et al. 2016), all  136 

located in the savanna woodland and open forests of Melville Island (Figure 1). These 88 sites were 137 

chosen to capture the large variation in both annual rainfall and fire history on Melville Island. 138 

Eighty-two of these sites were surveyed using both live-trapping and camera-trapping, with the 139 

remaining six sites being surveyed using only camera-trapping. Live-trapping followed the 2000–140 

2002 protocol but was conducted over four consecutive nights instead of three, and used eight cage 141 

traps and 16 Elliott traps. To avoid bias relating to possible seasonal differences in trap-success, re-142 

visited sites were trapped at a comparable time of year to when they were originally surveyed. In 143 

2015, no pitfall traps were used or site searches undertaken. Camera-trapping involved five 144 

horizontally facing motion-sensor cameras left continuously recording (24-hours per day) for a 145 

minimum 35 consecutive day period that overlapped with each site’s live-trapping survey. Camera 146 

traps were baited with a mixture of peanut butter, oats and honey. To ensure maximum likelihood of 147 

being triggered, each camera was carefully positioned to ensure the bait was in the centre of the field 148 

of view (Gillespie et al., 2015).Vegetation within each camera’s field of view was cleared to reduce 149 

the chance of false triggers and to reduce the risk posed by fire. Of the five cameras deployed at each 150 

site, two were ReconyxTM HC550 Hyperfire white flash cameras (Reconyx Inc., Holmen, USA), while 151 

the remaining three were ReconyxTM PC800 Hyperfire Professional infra-red flash cameras. All 152 

cameras were set to take three image bursts per trigger, with a 1-second delay between images. The 153 

sensitivity of each camera was set to high, with cameras re-arming instantly after being triggered.  154 

To allow for direct comparison of the live-trapping results, we excluded captures from the original 155 

surveys arising from methods not repeated in 2015 (i.e. pitfall traps and site searches). We 156 

acknowledge here a potential source of bias arising from the exclusion of the pitfall records. On any 157 

given night, a particular animal caught in a pitfall trap is no longer able to be trapped in an Elliott or 158 

cage trap. Therefore the number of animals caught in pitfall traps could have influenced the 2000-159 

2002 trap-success. We highlight that this source of bias relates only to those species small enough to 160 

be caught in pitfall traps (i.e. mice and dunnarts), and note that the number of mammals caught in 161 

pitfall traps in 2000-2002 was low and therefore not a large source of bias. As trap-success and 162 

species richness do not increase linearly with the number of nights that traps are deployed, we also 163 

excluded all captures recorded on the fourth night of live-trapping in 2015. The initial sampling 164 

derived an abundance measure from the number of captures and noted the possibility that multiple 165 

captures could include the same individual. For consistency we derived trap success the same way. 166 A
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 167 

Figure 1: Location of the 88 sites surveyed for CWR mammals in 2015 on Melville Island. Filled 168 

circles represent the 82 sites where both camera-trapping and live-trapping were conducted, and open 169 

circles represent the six sites where only camera-trapping was conducted. The location of Melville 170 

Island relative to mainland Australia is shown in the inset.  171 

 172 

Table 1: Description and justification of the variables used in analyses to assess the correlates of 173 

Melville Island mammal distribution in 2015. 174 

Explanatory 

variable 
Description and justification for inclusion 

Variable used in 

analyses to predict: 

Fire activity Following Lawes et al. (2015), a remote-sensed fire variable 

derived from fine-scale (30 × 30 m) LANDSAT satellite 

imagery, representing the proportion of the area surrounding 

each site that was burnt in each year, averaged over the five 

years preceding mammal sampling. Calculations were made 

using an area with a radius of 3.2 km as shown by Lawes et al. 

(2015) to have the strongest influence on mammal populations. 

 Feral cat 

activity 

 Mammal 

occupancy and 

detectability 

Rainfall Mean annual rainfall (Australian Bureau of Meteorology  Feral cat 
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2015). Throughout Australia, feral cat densities tend to be 

lower in areas of high rainfall (Legge et al., 2016) and mammal 

species in areas of high rainfall have declined the least (Fisher 

et al., 2013). 

activity 

 Mammal 

occupancy and 

detectability 

Basal area Calculated as the sum of the basal area (m2/ha) of 50 trees 

(with a diameter at breast height greater than 5 cm) measured 

within a quadrat 5 m wide with a length equal to the distance to 

the 50th measured tree or a maximum of 200 m. Firth et al. 

2006a demonstrated the influence of basal area on the 

occurrence of mammals.  

 Mammal 

occupancy and 

detectability 

Dingo 

activity 

The proportion of nights that dingos were recorded on camera 

at each site. This was taken as an approximation of dingo 

activity at each site. Included in analyses to investigate the 

potential negative influence of dingos on feral cats and 

potential benefits for mammal populations (Johnson, 2006, 

Kennedy et al., 2012). 

 Feral cat 

activity 

 Mammal 

occupancy and 

detectability 

Shrub 

density 

A count of the number of shrubs in a 1 × 100 m quadrat at each 

site. Shrubs were defined as anything greater than 20 cm in 

height with a diameter at breast height of less than 5 cm. 

Shrubs with multiple stems were counted as a single 

individual. Vegetation structure has been demonstrated to 

reduce feral cat hunting success, and therefore influence the 

distribution of feral cats as well as the occupancy and 

detectability of mammals (McGregor et al., 2015).  

 Feral cat 

activity 

 Mammal 

occupancy and 

detectability 

Distance to 

water 

A remote-sensed variable measuring the distance (m) from 

each site to the closest permanent water body. The distance to 

water was demonstrated by Firth et al. (2006a) to strongly 

influence a number of mammals on Melville Island. 

 Mammal 

occupancy and 

detectability 

Coarse 

woody 

debris 

(CWD) 

A count of the number of logs with a diameter of greater than 5 

cm that crossed a 200 m transect at each site. Included in 

analyses due to Firth et al. (2006b) demonstrating the reliance 

of some mammals on fallen logs as den sites.  

 Mammal 

occupancy and 

detectability 
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Feral cat 

activity 

 

As an index of feral cat activity, we used the predicted 

probability of detecting feral cats at each site, derived from 

spatially explicit generalised linear models (Murphy et al., 

2010). The probability of feral cat detection was included in 

the analyses as cats have been implicated as a major factor in 

the northern mammal decline (Woinarski et al., 2011a, 

Ziembicki et al., 2014). SeeDavies et al. (2016). 

 Mammal 

occupancy and 

detectability 

Julian day The Julian day of the calendar year that sampling started at 

each site. Recent work by Geyle (2015) demonstrated that the 

detectability of the brush-tailed rabbit-rat (Conilurus 

penicillatus) increases throughout the dry season (May – 

November). 

 Mammal 

detectability 

Number of 

cameras 

operating 

 

An observation level covariate to account for the variation in 

detectability arising from uneven numbers of cameras 

operating at different sites due to camera malfunction and 

destruction. 

 Mammal 

detectability 

 175 

 176 

 177 

Data analysis: 178 

1) Trends in trap-success 179 

Mammal species >200 g, such as northern brown bandicoot (Isoodon macrourus), common brushtail 180 

possum (Trichosurus vulpecula) and black-footed tree-rat (Mesembriomys gouldii), were caught 181 

almost exclusively in cage traps, whereas smaller species such as the delicate mouse were exclusively 182 

caught in Elliott traps (See Table S1 in supplementary material). Therefore, prior to investigating 183 

changes in trap-success, we first had to account for the different ratio of cage traps to Elliott traps 184 

used at each site between sampling years, as this would strongly influence the recorded trap-success 185 

in each year. To account for this bias, we derived a species-specific effective trap-success based on 186 

the relative effectiveness of each trap type (cage vs. Elliott). This was done for each species that 187 

showed a strong bias for either trap type (See Table S2 in supplementary material). These scaling 188 

factors could only be determined from the 2015 live-trapping data as the original data did not 189 

consistently record the trap type. For example, although the trap effort for Elliott traps was twice that 190 
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of cage traps in 2015, Elliott traps accounted for only 2.7% of black-footed tree-rat captures. 191 

Therefore the effective trap-success in each year for this species was calculated as:  192 

Effective trap-success = number of captures ÷ (number of cage trap nights + 0.027*number of Elliott 193 

trap nights) * 100 194 

Wilcoxon matched-pairs tests were used to investigate changes in trap-success (calculated as the sum 195 

of all species’ effective trap-success at each site), site-level species richness and species-specific 196 

effective trap-success at the 82 sites where live-trapping was conducted in both 2000–2002 and 2015.  197 

2) Correlates of mammal distribution in 2015 198 

Davies et al. (2016) investigated a range of environmental correlates of the distribution of the brush-199 

tailed rabbit-rat on Melville Island. Here we use the same approach to investigate the 2015 200 

distribution of three other mammal species that were detected by camera traps sufficiently to permit 201 

occupancy modelling: the northern brown bandicoot, black-footed tree-rat and common brushtail 202 

possum. Single-season occupancy models were used to investigate how each predictor variable (Table 203 

1) influenced site occupancy. For comparison, we also present results published by Davies et al. 204 

(2016) for the brush-tailed rabbit-rat. Occupancy modelling was conducted using only the 2015 205 

camera trapping data (88 sites) in the package “unmarked” in R (Fiske and Chandler, 2011). 206 

Explanatory variables were centred and standardised prior to analysis.  207 

Due to the many variables and therefore the large number of possible models, occupancy modelling 208 

was applied in a two-step process. First we determined which variables best explained the 209 

detectability of each species by running all combinations (512 models) of the nine variables we 210 

hypothesised might influence the detectability of small mammals. This was done with occupancy 211 

constrained to a saturated model of the seven variables we hypothesised might influence site 212 

occupancy for the mammal species. Model selection based on AIC was then used to select the most 213 

parsimonious model in the candidate set. The second step involved running all possible combinations 214 

of the seven occupancy variables (128 models) with detectability constrained to the most important 215 

variables identified in step one. Model selection based on AIC was then used for the second time to 216 

determine the best model in the candidate set. Where no single model was clearly superior at 217 

explaining the distribution of a species (i.e. ΔAIC <4), we used model averaging to obtain parameter 218 

estimates (Burnham and Anderson, 2002).  219 

Once the most parsimonious model with only the main effects was identified, we investigated the 220 

possible effect of an interaction between the feral cat activity and both fire and shrubs. This was done 221 

because processes that simplify vegetation structure (such as frequent fire) might amplify the impact 222 

of feral cats. We also tested whether the inclusion of tree basal area increased the model fit. 223 
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Accounting for imperfect detection provides more realistic, but less precise, estimates of occupancy 224 

(Guillera-Arroita et al., 2014). To gauge how accounting for detectability influenced our occupancy 225 

estimates and hence the confidence in our conclusions drawn from these models, we also ran all 226 

combinations of the occupancy variables but assuming constant detectability.  227 

We assessed the fit of the most saturated model for each mammal species with three goodness-of-fit 228 

tests based on parametric bootstrapping: Pearson’s chi-square statistic, the sum of squared errors and 229 

the Freeman-Tukey chi-square statistic. These methods repeatedly simulate datasets based on a fitted 230 

model, and then evaluate the probability that the observed history of outcomes has a reasonable 231 

chance of happening if the model assessed is assumed to be correct (MacKenzie and Bailey, 2004).  232 

 233 

Results: 234 

1) Trends in trap-success 235 

A total of twelve mammal species were recorded, two of which do not have a mean body size within 236 

the CWR: delicate mouse and Butler’s dunnart. Overall trap-success was 62% lower in 2015 (6.1 ± 237 

0.8) than in 2000–02 (16.1 ± 1.5; Z = 5.6, p < 0.001). Three of the five species recorded from at least 238 

ten sites across the sampling periods, exhibited a significant decrease in trap-success, with northern 239 

brown bandicoot decreasing by 90% (Z = 5.42, p < 0.001), brush-tailed rabbit-rat by 64% (Z = 1.97, p 240 

< 0.05) and black-footed tree-rat by 63% (Z = 3.33, p < 0.001) (Figure 2). The remaining five species 241 

(mostly reported from few sites) showed no significant change (Table 2). 242 

Site-level species richness decreased by 36% between 2000-02 (1.6 ± 0.1) and 2015 (1.0 ± 0.1; Z = 243 

3.82, p < 0.001). The proportion of sites where no native mammals were trapped doubled from 13% to 244 

26%. Six species exhibited a large decrease in naïve occupancy (39 – 80%), while the common 245 

brushtail possum and delicate mouse were recorded at 29% more sites in 2015 than in 2000-02 (Table 246 

2).  247 

2) Correlates of mammal distribution in 2015 248 

Given the overall high detectability for all species, the estimated rate of occupancy by the respective 249 

best model for each species was very similar to the naïve and null model estimates (See Table S2 in 250 

supplementary material). As such, the effect of each covariate on site-occupancy was similar 251 

regardless of whether the models included effects of covariates on detectability or not.  252 

Shrub density was a (borderline) significant predictor of site-occupancy by the black-footed tree-rat, 253 

as it was for the brush-tailed rabbit-rat, but not for the northern brown bandicoot or common brushtail 254 

possum (Figure 3). Unlike the situation for the brush-tailed rabbit rat, feral cat detection was not a 255 

significant predictor variable for any of the other species (Figure 3). Fire was not a significant 256 
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predictor for any species, and neither the inclusion of neither tree-basal area nor an interaction 257 

between fire and shrubs with feral cat activity improved the model fit for any species.  258 

 259 

a) Northern brown bandicoot*   b) Black-footed tree-rat* 260 

 261 

c) Brush-tailed rabbit-rat*   d) Common brushtail possum 262 

 263 

Figure 2: The difference in live trap-success in 2000-02 (solid line) and 2015 (dashed line) for a) 264 

northern brown bandicoot b) black-footed tree-rat c) brush-tailed rabbit-rat and d) common brushtail 265 

possum. Asterisks indicate a statistically significant (p < 0.05) change in trap-success. 266 

 267 

 268 

 269 

Table 2: Summary of the changes in the native mammal populations of Melville Island recorded with 270 

live-trapping between 2000–02 and 2015. Naïve occupancy was calculated as the percentage of the 82 271 

live-trapped sites where a species was detected. * = p < 0.05, *** = p < 0.001. Decreases denoted by -272 

, increases denoted by +. Species in bold indicate a body-size outside the critical weight range. Dashes 273 

indicate species for which a proportional change in trap-success could not be calculated. 274 
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Species 

Naïve 

occupancy 

2000-02 

(%) 

Naïve 

occupancy 

2015 (%) 

Change in 

naïve 

occupancy 

(%) 

Trap-

success 

2000-02 

(%) 

(±SE) 

Trap-

success 

2015 

(%) 

(±SE) 

Change in 

trap-

success 

(%) 

Northern brown 

bandicoot (Isoodon 

macrourus) 

49 12 - 75 
6.91 

(0.99) 

0.71 

(0.23) 
- 90*** 

Black-footed tree-rat 

(Mesembriomys 

gouldii) 

38 23 - 39 
3.69 

(0.59) 

1.38 

(0.33) 
- 63*** 

Common brushtail 

possum (Trichosurus 

vulpecula) 

27 38 + 29 
3.78 

(0.88) 

3.32 

(0.73) 
- 12 

Brush-tailed rabbit-

rat 

(Conilurus 

penicillatus) 

17 9 - 50 
0.53 

(0.15) 

0.19 

(0.08) 
- 64* 

Grassland melomys 

(Melomys burtoni) 
7 4 - 50 

0.69 

(0.31) 

0.10 

(0.06) 
- 88 

Delicate mouse 

(Pseudomys 

delicatulus) 

7 12 + 29 
0.20 

(0.09) 

0.30 

(0.10) 
+ 33 

Pale field-rat 

(Rattus tunneyi) 
6 1 - 80 

0.10 

(0.05) 

0.02 

(0.02) 
- 80 

Red-cheeked dunnart 

(Sminthopsis 

virginiae) 

5 1 - 75 
0.10 

(0.06) 

0.03 

(0.03) 
- 70 

Northern sugar glider 

(Petaurus breviceps) 
2 0 - 

0.03 

(0.02) 
0 - 

Northern brush-tailed 

phascogale 

(Phascogale pirata) 

2 0 - 
0.03 

(0.02) 
0 - 

Butler's dunnart 

(Sminthopsis 

butleri)  

1 0 - 
0.03 

(0.02) 
0 - 
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Western chestnut 

mouse 

(Pseudomys nanus) 

0 2 - 0 
0.03 

(0.02) 
- 

 275 

   276 

 277 

 278 

 279 

 280 

 281 

Figure 3: Model averaged regression coefficient estimates for a) the northern brown bandicoot, b) the 282 

black-footed tree-rat, c) the common brushtail possum and d) the brush-tailed rabbit-rat (first 283 

published in Davies et al. (2016)). Error bars indicate 95% confidence intervals; asterisks indicate 284 
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where they do not overlap zero, i.e. a statistically significant effect. Data sourced from 2015 camera-285 

trapping. 286 

 287 

  288 

Discussion: 289 

Many native mammal species have recently experienced severe range contractions across northern 290 

Australia, and Melville Island is one of the few remaining areas to have retained an intact mammal 291 

fauna (Woinarski et al. 2010, Ziembicki et al. 2014). However, Davies et al. (2016) demonstrated that 292 

the Melville Island population of the brush-tailed rabbit-rat had retracted to areas where feral cats 293 

were rarely detected and shrub density was high. Here we build on that study to report evidence of 294 

broader decline in the mammal assemblage of Melville Island. We found that trap-success and species 295 

richness at the site-level decreased by 62% and 36% respectively from 2000-02 to 2015. As predicted, 296 

declines were most evident for three species that have suffered considerable declines on mainland 297 

northern Australia: northern brown bandicoot (90% decrease in trap-success), brush-tailed rabbit-rat 298 

(64%) and black-footed tree-rat (63%). These severe declines are particularly notable because the 299 

local subspecies of black-footed tree-rat (M. gouldii melvillensis) is endemic to the island, and the 300 

local subspecies of brush-tailed rabbit-rat (C. penicillatus melibius) is endemic to Melville Island and 301 

the adjacent Bathurst Island. However, inconsistent with our prediction, there was no such decline for 302 

the common brushtail possum, a comparably-sized species that has also exhibited marked decline on 303 

the northern Australian mainland (Woinarski et al., 2010). 304 

We acknowledge the limitations associated with inferring mammal decline with only two data points 305 

spaced 15 years apart. However, the pattern of decline observed on Melville Island is very similar to 306 

that recorded in Kakadu National Park between 2001 and 2009. Over this period in Kakadu, the 307 

brush-tailed rabbit-rat and black-footed tree-rat were not recorded frequently enough to permit 308 

statistical analysis (despite both species being common 30–40 years previously) (Woinarski et al., 309 

2010), and the abundance of the northern brown bandicoot and common brushtail possum decreased 310 

by 88 and 86% respectively (Woinarski et al., 2010). This suggests that in Kakadu, the brush-tailed 311 

rabbit-rat and black-footed tree-rat were among the first mammal species to decline. It is therefore 312 

plausible that Melville Island is currently experiencing the pattern of decline that occurred in Kakadu 313 

National Park over a decade earlier.  314 

Unlike the brush-tailed rabbit-rat (Davies et al. 2016) and despite substantial decreases in trap-315 

success, neither the northern brown bandicoot nor black-footed tree rat appear to have suffered 316 

marked range contractions on Melville Island. This suggests that their declines have not yet 317 

progressed to the point of influencing their distribution. The lack of change in the occurrence of these 318 
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species (as opposed to abundance) can explain why we failed to detect relationships between 319 

environmental variables, including the presence of feral cats or frequent fire, and site occupancy.  320 

There are a number of potential explanations for why small mammal declines on Melville Island have 321 

not progressed to the same extent as on mainland northern Australia. First, Melville Island is a highly 322 

productive area of monsoonal northern Australia (Richards et al., 2012), and receives the highest 323 

annual rainfall in the Northern Territory. This productivity likely results in high resource availability 324 

and high rates of survival and reproduction. As such, mammal populations on Melville Island might 325 

not only be more resilient than those on the mainland, but initial population sizes on Melville Island 326 

may have been higher. Either of these possibilities may result in a longer period of time being 327 

required to cause widespread contractions of species distributions.  328 

Second, and also related to the higher rainfall, much of Melville Island has a particularly dense 329 

understorey and midstorey of shrubs and small trees (Richards et al., 2012, Davies et al., 2016). As a 330 

result, the predation pressure imposed on mammal populations, particularly by feral cats, may be 331 

lower on Melville Island compared with the mainland (McGregor et al., 2015, Hohnen et al., 2016, 332 

Leahy et al., 2016). This is supported by evidence that site occupancy by the brush-tailed rabbit-rat 333 

and the black-footed tree-rat on Melville Island is positively related to shrub density (Davies et al., 334 

2016).  335 

Third, it is possible that fire intensity is generally lower on Melville Island than on the mainland. 336 

Melville Island has a longer wet season and experiences a greater amount of dry-season rain than is 337 

the case for the mainland, and so dry fuel for fire is available for a shorter period of time. The amount 338 

of flammable grass-layer fuel loads may also be lower on Melville Island due to a higher density of 339 

trees and shrubs. As such, any fire-related depletion of resources on Melville Island may not have 340 

occurred to the same extent. If the decline of common brushtail possum populations on mainland 341 

northern Australia has been primarily driven by fire-driven resource depletion (especially tree 342 

hollows)(Woinarski and Westaway, 2008), the apparent stability of this species on Melville Island 343 

may be related to a more benign fire regime. There is currently no direct evidence demonstrating that 344 

fire regimes have been more benign on Melville Island than other areas. Addressing this knowledge 345 

gap should be the focus of future research. 346 

Finally, it is likely that cats have not been on Melville Island for as long as they have on the mainland 347 

(Abbott and Burbidge, 1995, Abbott, 2002, Abbott, 2008), and although there have been some 348 

anecdotal reports that cats were introduced to Tiwi islands only within the past few decades (Firth, 349 

2010), definitive evidence of an introduction date is not available. It is also plausible that feral cat 350 

populations (and their impact on native mammals) on Melville Island have been suppressed by high 351 

dingo densities (Kennedy et al., 2012).  352 
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Unfortunately, the validity of the above explanations are difficult to evaluate given a lack of relevant 353 

information on changes in native mammal populations, feral cat and dingo densities, as well as any 354 

changes in fire regimes. However, our finding of widespread declines in an area recently thought to be 355 

a refuge for mammals highlights the importance of differentiating between true refuges, where 356 

threatening processes are either absent or effectively mitigated, and areas that appear intact simply 357 

because declines have been delayed or have occurred relative to a higher initial density level. The 358 

latter appears to be the case on Melville Island. This distinction may help prioritise management 359 

actions and facilitate timely intervention. These results also have important implications for 360 

conservation management. Davies et al. (2016) suggested that fire management that enhances the 361 

density of the shrub layer could be a feasible management option to reduce the impact of feral cats on 362 

the threatened brush-tailed rabbit-rat. Here, we have also demonstrated a weak but significant, 363 

positive association between the density of shrubs and the probability of site-occupancy by the black-364 

footed tree-rat. While this association might be due to increased food availability rather than shelter 365 

from predation (Friend, 1987), it appears that fire management that maintains a dense understorey 366 

could also benefit this species. Small mammal populations have been shown to respond positively to 367 

strategic fire management in the Kimberley region of Western Australia (Legge et al., 2011), and a 368 

similar approach to fire management could prove beneficial for Melville Island biodiversity.  369 

In conclusion, we have shown that the severe population declines that have been documented for 370 

small mammals across mainland northern Australia appear to be underway on Melville Island. On the 371 

basis of current evidence, we cannot distinguish between a series of potential primary causal 372 

mechanisms, and hence cannot yet provide a tight focus for remedial management response. We 373 

recommend the following explicit research actions to tease apart the relative impacts of these putative 374 

causal factors: (1) quantify the availability of critical small mammal resources across Melville Island 375 

and determine how fire frequency and intensity influences their rate of depletion (2) determine how 376 

(and why) the density of mammalian predators varies across Melville Island (3) quantify the response 377 

of small mammal populations to a range of experimentally manipulated combinations of predation 378 

pressure (using fenced exclosures) and fire frequency. In 2001, Woinarski et al. (2001) warned that 379 

the mammal fauna of northern Australia may suffer the same fate as the decimated central Australian 380 

mammal fauna. Unfortunately, this appears to be coming to fruition, with many species suffering 381 

widespread contraction across mainland northern Australia (Woinarski et al. 2010). Here we reiterate 382 

this warning with increased urgency and highlight that the consequences of losing these species go 383 

beyond the ecological. Traditional food sources (including small mammals) are an important part of 384 

the Tiwi diet and provide vital healthy food options for communities. Hunting activities reinforce 385 

traditional authority structures, are an important way of passing on traditional knowledge, and form 386 

the basis for cultural land management. If Tiwi small mammal populations continue to decline, there 387 

will be significant impacts on the expression of Tiwi culture. As such, there is a a critical need to 388 
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improve our understanding of the factors driving these declines, and to implement management 389 

actions before these species are lost from one of the last remaining areas in Australia with an intact 390 

small mammal fauna.  391 

 392 

 393 
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Table 1: Description and justification of the variables used in analyses to assess the correlates of 

Melville Island mammal distribution in 2015. 

Explanatory 

variable 
Description and justification for inclusion 

Variable used in 

analyses to predict: 

Fire activity Following Lawes et al. (2015), a remote-sensed fire variable 

derived from fine-scale (30 × 30 m) LANDSAT satellite 

imagery, representing the proportion of the area surrounding 

each site that was burnt in each year, averaged over the five 

years preceding mammal sampling. Calculations were made 

using an area with a radius of 3.2 km as shown by Lawes et al. 

(2015) to have the strongest influence on mammal populations. 

 Feral cat 

activity 

 Mammal 

occupancy and 

detectability 

Rainfall Mean annual rainfall (Australian Bureau of Meteorology 

2015). Throughout Australia, feral cat densities tend to be 

lower in areas of high rainfall (Legge et al., 2016) and mammal 

species in areas of high rainfall have declined the least (Fisher 

et al., 2013). 

 Feral cat 

activity 

 Mammal 

occupancy and 

detectability 

Basal area Calculated as the sum of the basal area (m2/ha) of 50 trees 

(with a diameter at breast height greater than 5 cm) measured 

within a quadrat 5 m wide with a length equal to the distance to 

the 50th measured tree or a maximum of 200 m. Firth et al. 

2006a demonstrated the influence of basal area on the 

occurrence of mammals.  

 Mammal 

occupancy and 

detectability 

Dingo 

activity 

The proportion of nights that dingos were recorded on camera 

at each site. This was taken as an approximation of dingo 

activity at each site. Included in analyses to investigate the 

potential negative influence of dingos on feral cats and 

potential benefits for mammal populations (Johnson, 2006, 

Kennedy et al., 2012). 

 Feral cat 

activity 

 Mammal 

occupancy and 

detectability 

Shrub 

density 

A count of the number of shrubs in a 1 × 100 m quadrat at each 

site. Shrubs were defined as anything greater than 20 cm in 

height with a diameter at breast height of less than 5 cm. 

Shrubs with multiple stems were counted as a single 

 Feral cat 

activity 

 Mammal 

occupancy and 
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individual. Vegetation structure has been demonstrated to 

reduce feral cat hunting success, and therefore influence the 

distribution of feral cats as well as the occupancy and 

detectability of mammals (McGregor et al., 2015).  

detectability 

Distance to 

water 

A remote-sensed variable measuring the distance (m) from 

each site to the closest permanent water body. The distance to 

water was demonstrated by Firth et al. (2006a) to strongly 

influence a number of mammals on Melville Island. 

 Mammal 

occupancy and 

detectability 

Coarse 

woody 

debris 

(CWD) 

A count of the number of logs with a diameter of greater than 5 

cm that crossed a 200 m transect at each site. Included in 

analyses due to Firth et al. (2006b) demonstrating the reliance 

of some mammals on fallen logs as den sites.  

 Mammal 

occupancy and 

detectability 

Feral cat 

activity 

 

As an index of feral cat activity, we used the predicted 

probability of detecting feral cats at each site, derived from 

spatially explicit generalised linear models (Murphy et al., 

2010). The probability of feral cat detection was included in 

the analyses as cats have been implicated as a major factor in 

the northern mammal decline (Woinarski et al., 2011a, 

Ziembicki et al., 2014). SeeDavies et al. (2016). 

 Mammal 

occupancy and 

detectability 

Julian day The Julian day of the calendar year that sampling started at 

each site. Recent work by Geyle (2015) demonstrated that the 

detectability of the brush-tailed rabbit-rat (Conilurus 

penicillatus) increases throughout the dry season (May – 

November). 

 Mammal 

detectability 

Number of 

cameras 

operating 

 

An observation level covariate to account for the variation in 

detectability arising from uneven numbers of cameras 

operating at different sites due to camera malfunction and 

destruction. 

 Mammal 

detectability 

 

 

 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Summary of the changes in the native mammal populations of Melville Island recorded with 

live-trapping between 2000–02 and 2015. Naïve occupancy was calculated as the percentage of the 82 

live-trapped sites where a species was detected. * = p < 0.05, *** = p < 0.001. Decreases denoted by -

, increases denoted by +. Species in bold indicate a body-size outside the critical weight range. Dashes 

indicate species for which a proportional change in trap-success could not be calculated. 

Species 

Naïve 

occupancy 

2000-02 

(%) 

Naïve 

occupancy 

2015 (%) 

Change in 

naïve 

occupancy 

(%) 

Trap-

success 

2000-02 

(%) 

Trap-

success 

2015 

(%) 

Change in 

trap-

success 

(%) 
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(±SE) (±SE) 

Northern brown 

bandicoot (Isoodon 

macrourus) 

49 12 - 75 
6.91 

(0.99) 

0.71 

(0.23) 
- 90*** 

Black-footed tree-rat 

(Mesembriomys 

gouldii) 

38 23 - 39 
3.69 

(0.59) 

1.38 

(0.33) 
- 63*** 

Common brushtail 

possum (Trichosurus 

vulpecula) 

27 38 + 29 
3.78 

(0.88) 

3.32 

(0.73) 
- 12 

Brush-tailed rabbit-

rat 

(Conilurus 

penicillatus) 

17 9 - 50 
0.53 

(0.15) 

0.19 

(0.08) 
- 64* 

Grassland melomys 

(Melomys burtoni) 
7 4 - 50 

0.69 

(0.31) 

0.10 

(0.06) 
- 88 

Delicate mouse 

(Pseudomys 

delicatulus) 

7 12 + 29 
0.20 

(0.09) 

0.30 

(0.10) 
+ 33 

Pale field-rat 

(Rattus tunneyi) 
6 1 - 80 

0.10 

(0.05) 

0.02 

(0.02) 
- 80 

Red-cheeked dunnart 

(Sminthopsis 

virginiae) 

5 1 - 75 
0.10 

(0.06) 

0.03 

(0.03) 
- 70 

Northern sugar glider 

(Petaurus breviceps) 
2 0 - 

0.03 

(0.02) 
0 - 

Northern brush-tailed 

phascogale 

(Phascogale pirata) 

2 0 - 
0.03 

(0.02) 
0 - 

Butler's dunnart 

(Sminthopsis 

butleri)  

1 0 - 
0.03 

(0.02) 
0 - 

Western chestnut 

mouse 

(Pseudomys nanus) 

0 2 - 0 
0.03 

(0.02) 
- 
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a) Northern brown bandicoot*   b) Black-footed tree-rat* 

 
c) Brush-tailed rabbit-rat*   d) Common brushtail possum 

 

Figure 2: The difference in live trap-success in 2000-02 (solid line) and 2015 (dashed line) for a) 

northern brown bandicoot b) black-footed tree-rat c) brush-tailed rabbit-rat and d) common brushtail 

possum. Asterisks indicate a statistically significant (p < 0.05) change in trap-success. 
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Figure 3: Model averaged regression coefficient estimates for a) the northern brown bandicoot, b) the 
black-footed tree-rat, c) the common brushtail possum and d) the brush-tailed rabbit-rat (first 
published in Davies et al. (2016)). Error bars indicate 95% confidence intervals; asterisks indicate 
where they do not overlap zero, i.e. a statistically significant effect. Data sourced from 2015 camera-
trapping. 
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a) Northern brown bandicoot 

 

b) Black-footed tree-rat 
 

d) Brush-tailed rabbit-rat 
 

c) Common brushtail possum 
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