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Abstract 25 

Nutrient effluents from urban and agricultural inputs have resulted in high 26 

concentrations of nitrate in freshwater ecosystems. Exposure to nitrate can be particularly 27 

threatening to aquatic organisms, but a quantitative synthesis of the overall effects on 28 

amphibians, amphipods and fish is currently unavailable. Moreover, in disturbed ecosystems, 29 

organisms are unlikely to face a single stressor in isolation, and interactions among 30 

environmental stressors can enhance the negative effects of nitrate on organisms. Here, the 31 

effects of elevated nitrate on activity level, deformity rates, hatching success, growth and 32 

survival of three taxonomic groups of aquatically respiring organisms are documented. Effect 33 

sizes were extracted from 68 studies and analysed using meta-analytical techniques. The 34 

influence of nitrate on life-stages was also assessed. A factorial meta-analysis was conducted 35 

to examine the effect of nitrate and its interaction with other ecological stressors on 36 

organismal survival. Overall, the impacts of nitrate are biased towards amphibians (46 37 

studies) and fish (13 studies), and less is known about amphipods (five studies). We found 38 

that exposure to nitrate translates to a 79% decrease in activity, a 29% decrease in growth, and 39 

reduces survival by 62%. Nitrate exposure also increases developmental deformities but does 40 

not affect hatching success. Nitrate exposure was found to influence all life-stages except 41 

embryos. Differences in the sensitivity of nitrate among taxonomic groups tended to be 42 

negligible. The factorial meta-analysis (14 amphibians and two amphipod studies) showed 43 

that nitrate in combination with other stressors affects survival in a non-additive manner. Our 44 

results indicate that nitrate can have strong effects on aquatic organisms. Moreover, nitrate 45 

can interact with other environmental stressors leading to compounding, negative effects on 46 

survival and highlights the need for research and management to take a holistic approach in 47 

conserving freshwater biodiversity in the face of ongoing global change.   48 

 49 



3 

1. Introduction 50 

Nutrient effluents into freshwater ecosystems have increased considerably in recent 51 

decades as human demands for food and energy exponentially increase (Díaz-Álvarez et al., 52 

2018). In particular, the extensive use of nitrogen has caused a cascade of environmental 53 

impacts, and nitrogen pollution is now regarded as one of the greatest threats to biodiversity 54 

worldwide (Díaz-Álvarez et al., 2018; Payne et al., 2017) causing severe impacts on terrestrial 55 

and aquatic ecosystems and their biota (Camargo and Alonso, 2006; Galloway et al., 2008).  56 

Various anthropogenic activities (e.g. agricultural fertilisers, urban, sewage and mine 57 

runoff) have increased the amounts nutrients (nitrogen and phosphorus) entering freshwater 58 

habitats (Jenkins, 2003). Excess nitrogen and phosphate runoff into freshwater can result in 59 

mass-scale eutrophication events and, in turn, threaten aquatic fauna (Dodds and Smith, 60 

2016). In particular, nitrate accumulation in freshwater is one of the most predominant threats 61 

facing aquatic organisms on worldwide scale (Jenkinson, 2001). As the final stage of the 62 

nitrification process, nitrate is the most common and abundant form of inorganic nitrogen in 63 

freshwater ecosystems. Nitrate occurs at naturally low background levels (~ 0 – 2 mg L-64 

1 NO3
−), but excessive nitrate pollution has resulted in elevated concentrations at around 10 – 65 

100 times above baseline levels (Galloway et al., 2004). Nitrate pollution is particularly 66 

prominent in areas of high fertiliser use and urban development which can cause surface 67 

water concentrations to increase to 25 – 100 mg L-1 NO3
− (Camargo et al., 2005). Similarly, 68 

considerable amounts of nutrients are discharged from aquaculture facilities that impact 69 

surrounding environments (Cao et al., 2007; Verdegem, 2013). Nitrate concentrations may 70 

remain elevated for prolonged periods of time and pose severe impacts on aquatic fauna.  71 

In spite of environmental concerns, nitrate is often considered as non-toxic and this is 72 

due in part to a lack of understanding of the effects of nitrate on aquatic organisms. 73 
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Aquatically respiring organisms, including amphibians, amphipods, and fish may be 74 

particularly vulnerable to elevated nitrate concentrations because nitrate can be taken up 75 

passively via the gills (Jensen, 1996). Once inside the body nitrate can cause significant 76 

physiological and behavioural alterations (Camargo et al., 2005; Guillette Jr. and Edwards, 77 

2005). At the whole animal level, nitrate can reduce growth (McGurk et al., 2006) and 78 

activity levels (Alonzo and Camargo, 2013), decrease reproductive outputs (Alonzo and 79 

Camargo, 2013; Soucek and Dickinson, 2016), increase the incidence of developmental 80 

deformities (Krishnamurthy et al., 2008) and ultimately reduce survival (Hamer et al., 2004; 81 

McGurk et al., 2006) of aquatic organisms. Nitrate also causes significant disruptions to 82 

oxygen delivery mechanisms (e.g. affecting haemoglobin concentrations, Monsees et al., 83 

2017), thyroid gland and thyroid hormone synthesis (Guillette Jr. and Edwards, 2005), and 84 

can cause epithelial necrosis in vital organs (Grabda et al., 1974; Romano and Zeng, 2007). 85 

Aquatically respiring organisms however vary in their sensitivity to nitrate. For instance, 86 

amphipods are often considered to be relatively tolerant of waterborne nitrate under 87 

laboratory toxicity tests (i.e. higher lethal concentrations) (Benítez-Mora et al., 2014; Soucek 88 

and Dickinson, 2012), while amphibians may be more sensitive (Camargo et al., 2005). 89 

Variations in biological responses to nitrate have been attributed to differences in nitrate 90 

uptake rates (Williams et al., 2008), body size (Hamlin 2006) and life-history stage (Ortiz-91 

Santaliestra et al., 2006), environmental context (i.e. source population, previous exposure; 92 

Edwards et al., 2006), and is dependent on nitrate concentration and duration of exposure 93 

(Camargo et al., 2005).  94 

Along with increased nitrate pollution, freshwater species also have to contend with a 95 

myriad of co-occurring ‘stressors’ (Jenkins, 2003; Ormerod et al., 2010). Environmental 96 

‘stressors’ refers to novel and/or extreme environmental changes that have arisen as a result of 97 

anthropogenic global change (Christensen et al., 2006; Jackson et al., 2016). Environmental 98 
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stressors can be both natural (e.g. abrupt fluctuations in temperature) or of anthropogenic 99 

origin (e.g. agricultural pollutants) and include biotic (e.g. introduced predators) and abiotic 100 

variables (e.g. acidic pH). There is a current need to model organismal responses to multiple, 101 

interacting stressors since stressor interactions are not always linear and multiple stressors 102 

often exacerbate or confound existing problems (Todgham and Stillman, 2013). Stressor 103 

interactions can often result in “ecological surprises” where the effects of one stressor are 104 

enhanced by the presence of a second stressor, even when one stressor is not considered a 105 

major threat in a particular system (Christensen et al., 2006). As such, two interacting 106 

stressors can have an effect which is greater (synergistic) or lesser (antagonistic) than the sum 107 

of the two stressors in isolation (additive; Folt et al., 1999). Simultaneous exposure to nitrate 108 

and other environmental stressors may, therefore, enhance mortality rates, or alternatively, 109 

increase organismal tolerance of elevated nitrate levels. For instance, nitrate (20 mg L-1) and 110 

the pesticide malathion (250 µg L-1) alone reduced survival by 20% and 14%, respectively, in 111 

the American toad (Anaxyrus americanus); however, when combined, survival was reduced 112 

synergistically to 48% (Krishnamurthy and Smith, 2010). Conversely, the presence of a 113 

predator (Gambusia affimis) did not enhance mortality rates in A. americanus tadpoles 114 

exposed to elevated nitrate (Smith and Dibble, 2012).  115 

A number of reviews have sought to provide a generalised synthesis of the effects of 116 

nitrate on aquatic organisms (Camargo and Alonso, 2006; Camargo et al., 2005; Guillette Jr. 117 

and Edwards, 2005; Mann et al., 2009). These reviews provide valuable toxicological 118 

information by summarising the nitrate lethal concentration (e.g. LC50; the nitrate 119 

concentration that kills half of the population), the ecosystem scale effects of nitrogen 120 

pollution and the role of nitrate on endocrine disruption to a variety of freshwater taxa. 121 

However, these reviews consider few response variables (e.g. survival), comparisons are 122 

restricted to single species, and often report much higher concentrations than would be 123 
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measured in the field. Literature reviews are also limited in that they lack statistical power and 124 

are therefore unable to provide a quantitative assessment of the impacts to species. In 125 

comparison, meta-analyses allow for an objective and transparent evaluation of data. Meta-126 

analyses are particularly effective in that they allow for a quantitative evaluation of effect 127 

sizes, integrate data from multiple sources (Foley et al., 2018; Gurevitch and Hedges, 1993), 128 

allow for the assessment of how effect sizes differ between pre-defined groups (e.g. life-129 

stages, taxa)  and can account for additional sources of variation (e.g. methodological 130 

difference such as length of exposure, experimental set-up) among studies.  131 

In this study, we quantified variation in biological responses to waterborne nitrate 132 

exposure by conducting a meta-analysis. First, we aimed to examine the impact of elevated 133 

nitrate on key fitness related traits, including activity, deformity rates, hatching success, 134 

growth, and survival in three groups of aquatically respiring freshwater organisms (aquatic 135 

amphibians, amphipods and fish). We also considered how effect size estimates are impacted 136 

on by methodological difference such life-stage (embryo – adult stages), source population 137 

(i.e. wild versus captive sources) and nitrate salt (ammonium nitrate, sodium nitrate). Second, 138 

we examined how survival is affected by nitrate and its interaction with other environmental 139 

stressors.  140 

2. Methods 141 

2.1 Selection Criteria 142 

Databases (Web of ScienceTM Core Collection and Scopus) were searched to identify 143 

appropriate literature following the Preferred Reporting Items for Systematic reviews and 144 

Meta-Analyses (PRISMA) model (Fig. S1; Moher et al., 2009). Literature searches were 145 

conducted using the following search strings: (“nitrate”) AND (“activity*” OR “deform*” OR 146 

“growth*” OR “hatch*” OR “surviv*”) AND (“amphibian* OR “arthropod” OR “fish” OR 147 

“larva*” OR “fry” OR “egg”). A total of 1729 titles were initially screened for relevancy and 148 
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1102 were screened by abstract. We read the full text of 424 articles, including 13 from the 149 

bibliographies of prominent reviews (Camargo and Alonso, 2006; Camargo et al., 2005; 150 

Guillette Jr. and Edwards, 2005; Mann et al., 2009). Data retention criteria were established 151 

that included studies having: 1) experimentally manipulated the water nitrate concentration; 152 

2) using controls that were not exposed to nitrate; 3) stated concentrations and type of nitrate 153 

salt used (i.e. ammonium nitrate, sodium nitrate or potassium nitrate); 4) exposure period 154 

clearly stated; and 5) extractable means, variances, and sample sizes for both control and 155 

treatment groups. If standard errors (SE) were reported, values were transformed to standard 156 

deviations (SD) following the equation: SD = SE ×  √N. When data were presented 157 

graphically, Image J (v. 1.51k, National Institute of Health, USA, http://imagej.nih.gov.ij) 158 

was used to extract means and variances. Forward and backward searches through reference 159 

lists were performed to examine for additional data. Studies were collected for analysis until 2 160 

August 2019 and a total of 68 studies were included.  161 

Data were extracted for the effects of nitrate on five response variables including 162 

activity (percentage of time spent active), deformity rate (percentage of developmental 163 

deformities over time), growth rate (change in mass over time, g; change in length over time, 164 

cm), hatching success (percentage of eggs hatched), and survival (survival percentage at the 165 

end of the exposure period). Nominal nitrate concentrations were also extracted from every 166 

study. We used nominal nitrate concentrations instead of average measured concentrations 167 

because average concentrations are not always presented in the main text of published papers. 168 

Further, we extracted other meta-data from papers including taxonomic group (amphibian, 169 

amphipod, fish), life-stage (embryo, larvae, juvenile, adult), origin of source population (wild 170 

or captive), nitrate salt used (ammonium nitrate, potassium nitrate, sodium nitrate), exposure 171 

duration and experimental temperature (oC). If experiments reported the response of nitrate 172 

over time (e.g. for survival) only the final time point was used in the analyses. In cases where 173 
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the published study reported data for more than one species, population or nitrate 174 

concentration, each outcome was included in the analysis. Although the inclusion of multiple 175 

measures from the same study could decrease the independence of some of the data points, 176 

this allowed us to explore the impacts of nitrate across a wider range of concentrations, 177 

response variables and species.  178 

2.2 Effect sizes 179 

Effects sizes were calculated as the ln-transformed response ratio (LnRR),  180 

LnRR = ln�𝑋𝑋𝐸𝐸
𝑋𝑋𝐶𝐶
� = 𝑙𝑙𝑙𝑙(𝑋𝑋�E) – ln(𝑋𝑋�C),  181 

where 𝑋𝑋�E and 𝑋𝑋�C are the mean responses from the experimental and the control groups, 182 

respectively. The variance (v) of each ln-transformed response ratio was also calculated, 183 

v = (𝑆𝑆𝑆𝑆𝐸𝐸)2

𝑁𝑁𝐸𝐸 𝑋𝑋�𝐸𝐸
2

 + (𝑆𝑆𝑆𝑆𝐶𝐶)2

𝑁𝑁𝐶𝐶 𝑋𝑋�𝐶𝐶
2

, 184 

where SD and N are the standard deviation and sample size of the experimental and the 185 

control groups (Hedges et al., 1999). Log response ratios and variances were calculated using 186 

the escalc function of the metafor package (v. 2.1-0; Viechtbauer, 2010) in R (v. 3.6.1l 187 

https://www.r-project.org/) using the R studio interface (v. 1.1.463). A negative ln-188 

transformed response ratio is interpreted as having a negative effect on the response variable, 189 

while a positive response ratio represents a positive effect. We chose log response ratios over 190 

other methods because response ratios calculate the proportional change between the control 191 

and the treatment groups and positive and negative deviations from the control have equal 192 

weight. Log response ratios are also robust to small sample sizes, less sensitive to differences 193 

in units, and normalises data that are not normally distributed (Lajeunesse, 2011; Viechtbauer, 194 

https://www.r-project.org/
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2010). For interpretation, log response ratios were converted into a measure of percent change 195 

(%Δ = exp((LnRR)−1)*100). 196 

2.3 Single-stressor effects of nitrate 197 

Meta‐analytic multilevel linear mixed‐effects models were run in order to calculate the 198 

overall effect size for each of the response variables (activity, deformity rate, growth rate, 199 

hatching success and survival), using the rma.mv function of the metaphor package. All 200 

models were fit using restricted maximum likelihood estimation (REML). Model estimates 201 

were considered significant if their 95% confidence intervals did not overlap with zero. Our 202 

data contained multiple levels of non-independence (Noble et al., 2017), including data that 203 

shared a common control and phylogenetic dependencies. We accounted for these 204 

dependencies by: first, including study ID and phylogeny (modelled with a phylogenetic 205 

relatedness correlation matrix) as random effects under the random argument of the rma.mv 206 

function; second, we constructed sampling variance–covariance matrices of our random 207 

effects. For studies that shared a common control, we calculated variance–covariance 208 

matrices using the covariance_commonControl function of the metagear package (v. 0.4) 209 

following the methods described in Lajeunesse (2016). Phylogenetic dependencies were 210 

modelled by constructing a phylogenetic tree (Fig. S2) of the 58 species within our dataset. 211 

The phylogenetic tree was constructed using the tnrs_match_names function in the R package 212 

rotl (v. 3.0.1; Michonneau et al., 2016), which uses the Open Tree Taxonomy database 213 

(Hinchliff et al., 2015). Branch lengths were computed using the default settings of the 214 

compute.brlen function in the R package ape (v. 5.3; Prandis and Schliep, 2019). The vcv 215 

function was then used to create a phylogenetic covariance matrix. We specified correlation 216 

matrices corresponding to our random effects (study ID and phylogeny) via the R argument of 217 

the rma.mv function (Lajeunesse, 2016) within all models. All models conform to the 218 

assumptions of a linear model (normality and heterogeneity). 219 
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From all multilevel linear mixed‐effects models, we calculated total heterogeneity (Q) 220 

in effect sizes, where a significant Q statistic indicates significant heterogeneity within the 221 

mean effect size. To explain some of this heterogeneity, we ran meta-regression models to test 222 

for the influence of moderators (covariates) on the magnitude of the effect of nitrate on 223 

response variables. Moderators considered in the analysis included: taxonomic group 224 

(amphibians, amphipods and fish), life-stage (embryo, larvae, juvenile or adult), source 225 

population (captive or wild) and nitrate salt (ammonium nitrate, potassium nitrate or sodium 226 

nitrate). Nitrate concentration, exposure duration and experimental temperature were included 227 

as continuous moderators. These moderators were chosen because they can potentially 228 

influence mean effect sizes. Model selection were performed using the glmulti function of the 229 

glmulti package (Calcagno, 2014). Model selection was completed following the information-230 

theoretic approach (Burnham and Anderson, 2002) and model evaluation was corrected for 231 

small sample sizes (AICc). Best models were determined by calculating AICc differences 232 

(ΔAICc) and AIC weights (wi). 233 

2.4 Multiple-stressor effects of nitrate 234 

For the factorial meta-analysis, we identified studies that employed a factorial design 235 

to test the interaction between nitrate in combination with other environmental stressors. Due 236 

to the scarcity of data on interacting stressors, only survival data were extracted for the 237 

factorial meta-analysis. Data were extracted from each study, including the isolated effects of 238 

nitrate; the isolated effect of exposure to other stressors (i.e. stressor two); the effect of the 239 

observed interaction (nitrate × stressor two); and data from the controls (no nitrate or other 240 

factors). As for the previous analyses, we calculated LnRR as a measure of effect size and 241 

corresponding sampling variance. In cases where the published study reported data for more 242 

than one species, population or nitrate concentration, each outcome was included in the 243 

analysis.  244 
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Multilevel mixed-effects models (using the rma.mv function of metafor) were run to calculate 245 

overall effect sizes for the effects of (1) the isolated effect of nitrate; (2) the isolated effect of 246 

exposure to other stressors (i.e. stressor two); (3) the effect of the observed interaction (nitrate 247 

× stressor two). As for the previous analyses, we accounted for dependent effect sizes by 248 

including study ID and phylogeny as random effects and constructed sampling variance–249 

covariance matrices of our random effects. Predicted interactions were calculated in order to 250 

classify the observed interactions using a multiplicative null model (Darling and Côté, 2008): 251 

LnRR(multiplicative) = 𝑙𝑙𝑙𝑙 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 2−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ×𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 2
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

 252 

A multiplicative model was chosen for the survival data because survival is a common 253 

response that represents probabilistic event and corrects for the fact that individuals killed by 254 

one stressor cannot be killed by another and bounds the combined mortality estimates to a 255 

maximum of 100% (Côté et al., 2016). The mean effect size of the observed percent survival 256 

was compared to the calculated predicted survival for the multiplicative model. The observed 257 

stressor interaction was classified as antagonistic if the effect size estimate was lower than the 258 

lower 95% confidence limit of the multiplicative survival model. Conversely, if the observed 259 

stressor interaction was greater than the upper 95% confidence limit, it was classified as a 260 

synergistic interaction. If the observed interaction overlapped with the predicted 95% 261 

confidence limit, the experiment was classified as an additive interaction.  262 

2.5 Publication bias 263 

To test for publication bias (i.e. publishing only results that show a significant finding)   264 

we used contour enhanced funnel plots of observed effect sizes against standard errors (Egger 265 

et al., 1997), via the funnel function in metafor. Secondly, we calculated Rosenberg’s fail-safe 266 

number which represents the number of papers that would need to be published with non-267 

significant results to change the mean effect size to a non-significant result (Rosenberg, 268 
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2005). Fail-safe numbers are considered robust to publication bias when larger than 5n + 10 269 

(where n = the number of studies already included in the meta-analysis) (Rosenberg, 2005).  270 

3. Results 271 

A total of 68 studies met our selection criteria and were included in the meta-analysis 272 

(Table S1, Fig. S1), however, not all studies provided data for all response variables nor 273 

taxonomic groups (Table 1). For the factorial meta-analysis, 16 studies met our selection 274 

criteria (Table S2) and included data only on amphibians (14 studies) and amphipods (two 275 

studies).  276 

3.1 Activity 277 

Activity decreased with nitrate exposure, with a mean effect size of -0.77 lnRR in our 278 

multivariate effects model (z = -4.52, P < 0.001; Fig. 1). This value translated to a 79.45% (± 279 

15.71% SE) reduction in activity. There was significant heterogeneity in the multivariate 280 

mixed-effects model (Q = 22.87, P < 0.001), indicating that additional variance between 281 

studies may be explained by moderators. Activity levels were impacted in amphibians but not 282 

in fish exposed to elevated nitrate (Fig. 2), while no studies on amphipods were available. The 283 

choice of experimental nitrate salt had a significant impact on effect size estimate (Fig. 3A), 284 

where the use of potassium nitrate tended to have no effect. Larval (z = -10.13, P < 0.001), 285 

but not adult (z = -1.46, P = 0.23), exposure significantly affected activity. The use of wild 286 

over captive-raised animals tended to result in stronger, negative effect sizes. Nitrate 287 

concentration and exposure duration were negatively correlated with activity (Table 2; Fig. 288 

S3, S4), but there was no influence of experimental temperature. 289 

3.2 Deformity rate  290 

Exposure to nitrate increased developmental deformity rates by an average of 291 

184.62% (± 52.35% SE; z = -2.48, P < 0.001; Fig. 1). There was significant heterogeneity in 292 

the multivariate mixed-effects model (Q = 59.32, P < 0.001). In the best fitting model (Table 293 
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S3), mean effect sizes and 95% confidence intervals for group moderators suggest that nitrate 294 

exposure increases developmental deformities in both amphibians and fish (Fig. 2). Both 295 

larval (z = -12.09, P < 0.001) and embryonic (z = -2.29, P = 0.02) exposure to nitrate 296 

increased deformity rates (Fig. 3B). Moreover, nitrate exposure duration was correlated with 297 

increased deformity rates but not exposure concentration or experimental temperature (Table 298 

2; Fig. S3, S4). 299 

3.3 Growth  300 

On average, exposure to nitrate reduced growth (LnRR = -0.26; Fig. 1) by 28.65% (± 301 

6.7% SE; z = -3.91, P < 0.001). Significant heterogeneity was detected in the multivariate 302 

model for growth (Q = 56.18, P < 0.001). For the moderators (Table S3), nitrate exposure 303 

significantly reduced the growth of amphibians, amphipods, and fish. Larval and juvenile 304 

exposure to elevated nitrate reduces growth performance (Fig. 3C), but adult and embryonic 305 

exposure did not impact on growth rates. The use of sodium nitrate, but not ammonium nitrate 306 

or potassium nitrate, impacted on growth performance. The growth performance of captive 307 

and wild-caught individuals tends to be impacted by nitrate exposure to a similar degree. 308 

Nitrate concentration, exposure duration and experimental temperature were all correlated 309 

with growth reduction (Table 2; Fig. S3, S4).  310 

3.4 Hatching success 311 

Although hatching success tended to decrease (1.51% mean decrease, ± 6.07% SE) 312 

with exposure to nitrate across all studies, the overall effect was not statistically significant (z 313 

= -0.26, P = 0.79; Fig. 1). There was also no significant heterogeneity for hatching success 314 

model (Q = 1.39, P = 1). Hatching success was also unaffected by any of the moderator 315 

variables (Fig. 2; Table 2). 316 
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3.5 Survival 317 

Across all studies, exposure to nitrate had a negative effect on survival (LnRR = -0.53; 318 

Fig. 1) and translated to a 62.50% (± 17.23 % SE) decrease in survival (z = -3.35, P < 0.001). 319 

The mean effect size for survival was significantly heterogeneous (Q = 433.13, P < 0.01). For 320 

the moderator variables, exposure to nitrate reduces survival of all three taxonomic groups 321 

(Fig. 2). The use of ammonium nitrate and sodium nitrate tended to affect survival by a 322 

similar margin, but is not affected by the use of potassium nitrate (Fig. 3D). Nitrate exposure 323 

impacts the survival of all life-stages except for embryos. Moreover, the use of wild and 324 

captive-raised animals had a significant impact on survival. There was also a significant 325 

relationship between nitrate concentration, exposure duration and experimental temperature 326 

on survival (Table 2; Fig. S3, S4). 327 

3.6 Factorial meta-analysis 328 

The factorial meta-analysis showed that exposure to nitrate alone reduced survival 329 

(LnRR = -0.29; z = -13.01, P = < 0.001), as did exposure to other abiotic or biotic stressors 330 

(LnRR = -0.13; z = -4.17, P < 0.0001; Fig. 4A). Survival was further reduced by the 331 

interaction between nitrate and other stressors (LnRR = -0.43, z = -26.59, P < 0.001; Fig. 4A). 332 

Calculations of the multiplicative model (LnRR = -0.52, P < 0.001) were also significant. 333 

Simultaneous exposure to nitrate and some pollutants (Malathion, glyphosate) and abiotic 334 

variables (dissolved oxygen) showed highly negative effect sizes, while nitrate in 335 

combination with predators and elevated salinity, for example, showed no effect (Fig. 4B). 336 

Based on specific effect size comparisons (64 effect sizes from 16 studies), we identified 27 337 

antagonistic, 16 synergistic and 21 additive interactions, or alternatively, 21 additive and 43 338 

non-additive interactions.  339 



15 

3.7 Publication bias 340 

Rosenberg’s fail-safe numbers were robust (ranging from 3254 to 4068573) for all 341 

response variables suggesting that many non-significant results are required to alter the 342 

conclusions. Contour enhanced funnel plots are presented in Fig. S5, and visual inspection of 343 

the funnel plots suggest that there is no evidence of publication bias. For the factorial meta-344 

analysis, the fail-safe number for the factorial meta-analysis were also robust (1402 – 7894). 345 

Collectively, the results suggest that there was no publication bias for any of our response 346 

variables, although it cannot be ruled due to the low number of studies included in some of 347 

the response variables.  348 

4. Discussion 349 

The meta-analysis conducted in this study provides quantitative evidence that 350 

exposure to nitrate poses consistent, negative effects on aquatically respiring organisms living 351 

in freshwater. The magnitude of the effects varied, with the strongest effects exerted on 352 

organismal deformities, growth and survival. Fish and amphibian embryos appear resilient to 353 

the effects of nitrate, having no effect on hatching success. In addition, we found that there is 354 

generally an antagonistic interaction when nitrate is combined with a second environmental 355 

stressor. The large magnitude of the effects on various response variables suggests that nitrate 356 

exposure may have cascading consequences on freshwater ecosystems. Our analyses highlight 357 

the need for a broader evaluation of the effects of nitrate on aquatically respiring organisms as 358 

most of the data have centred on growth and survival estimates, and do not consider other 359 

relevant fitness correlates (e.g. activity, deformity rates). Further, a broader taxonomic 360 

evaluation of the effects of nitrate beyond amphibians is warranted.  361 
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Overall Effects of Nitrate 362 

Growth, deformity rate and survival were among the most sensitive processes to 363 

waterborne nitrate exposure. On average, exposure to nitrate reduces growth by 29.2% and 364 

increases the incidence of developmental deformities by 184% relative to controls. Further, 365 

nitrate exposure decreased survival by 62.5%. Our results are in keeping with previous 366 

reviews of the effects of nitrate, which conclude that elevated nitrate exposure reduced regular 367 

growth, altered developmental trajectories and lowered survival rates (Camargo and Alonso, 368 

2006; Camargo et al., 2005; Mann et al., 2009) of aquatically respiring organisms. The 369 

negative effects of nitrate can be attributed to disruptions of a number of physiological 370 

processes such as increased energy expenditure (Gomez Isaza et al., 2018), increased 371 

methaemoglobin concentrations (Grabda et al., 1974; Monsees et al., 2017) and nitrate 372 

accumulation in the tissues (Cheng et al., 2002; Romano and Zeng, 2007). Nitrate also alters 373 

the functioning of the thyroid gland (Guillette Jr. and Edwards, 2005) which can interfere 374 

with regular growth, development, and survival of freshwater organisms. Declines in growth 375 

and development caused by nitrate exposure may pose additional fitness constraints 376 

including: increased predation risk (Englund and Krupa, 2000; Schlosser, 1988), reduced 377 

competitive abilities (Englund and Krupa, 2000; Krishnamurthy et al., 2006), and delayed 378 

reproductive maturity and output in later life (Alonzo and Camargo, 2013; Gibbons and 379 

McCarthy, 1986; Kolm, 2002).   380 

Environmental stressors that alter a species’ ability to move through its environment 381 

have the potential to have broad-scale implications and can affect many species and life-382 

history stages (Killen et al., 2013). Our results show that nitrate acts to alter activity and 383 

behaviours of species. However, the scarcity of data (ten studies) evaluating the impacts of 384 

nitrate on whole-animal activity and the distinct taxonomic bias towards amphibians limits 385 

the potential for generalisable trends. That been said, nitrate influences organismal behaviour 386 
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by increasing the percentage of inactive periods (Ilha and Schiesari, 2014), reducing foraging-387 

related behaviours (Krishnamurthy et al., 2006; Xu and Oldham, 1997)  and reducing mate 388 

guarding behaviours (Pandey et al., 2011). Animals exposed to nitrate are often 389 

characteristically lethargic – a possible consequence of reduced oxygen carrying capacity 390 

(Gomez Isaza et al., 2018; Monsees et al., 2017). Nitrate-induced alterations to an organism’s 391 

behaviour can reduce the amount of time spent feeding, guarding territories and seeking out 392 

potential mates lowering overall fitness. Lethargy may also increase susceptibility to 393 

predation (Scott and Sloman, 2004), however, it is noteworthy that nitrate does not affect fast 394 

muscles movements associated with predator escape responses (Secondi et al., 2013). Our 395 

analyses indicate that across a variety of experimental conditions, nitrate adversely affects 396 

organismal activity, and that the effects are not limited to specific behavioural responses or 397 

species.  398 

A positive correlation was found between nitrate concentration and the mean effect 399 

size of activity rates, growth and survival. This result was expected as higher nitrate 400 

concentrations increase the passive uptake of nitrate into the body (Freitag et al., 2015). 401 

However, nitrate dose-response curves are not always linear, and as such, low nitrate 402 

concentrations can have an effect that is greater than would be expected. For example, 403 

exposure to increasing nitrate caused a non-monotonic effect on plasma testosterone levels in 404 

juvenile Atlantic salmon (Salmo salar) (Freitag et al., 2015). Further, prolonged exposure to 405 

modest nitrate concentrations (80 – 100 mg L-1 NO3
−) can be toxic to a variety of freshwater 406 

species (Davidson et al., 2014; Ortiz-Santaliestra et al., 2010; Soucek and Dickinson, 2016). 407 

Current nitrate concentration guidelines are based on limited datasets (e.g. lethal 408 

concentrations of nitrate, LC50) and are set at approximately 50 mg L-1 NO3
− (Canadian 409 

Council of Ministers of the Environment, 2012; Environment Australia, 2000; European 410 

Commission, 2018) and at 44.3 mg L-1 NO3
− by the United States Environmental Protection 411 
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Agency (EPA, 2002). Current nitrate concentration guidelines are likely to provide protection 412 

to some but not all species given the variability in the effect size estimates reported here (Fig. 413 

S3). Some response variable are also more sensitive to nitrate exposure (e.g. activity) and 414 

management guidelines should aim to incorporate a broader range of available data.  415 

Exposure duration tended to exacerbate the negative effects of nitrate. Freshwater 416 

organisms appear resilient to short-term nitrate exposures, as shown by numerous acute 417 

exposure experiments (Hecnar, 1995; Romano and Zeng, 2007; Soucek and Dickinson, 2012). 418 

However, long-term nitrate exposure may result in the accumulation of nitrate in the plasma 419 

and, in turn, impact on physiological processes. To date, experimental studies examining the 420 

chronic effects of nitrate are scarce and so the results of this meta-analysis likely 421 

underestimates species susceptibility. For example, a 35-day exposure to 6.45 mg L-422 

1 NO3
−caused significant reductions in the growth performance of green frog tadpoles (Smith 423 

et al., 2013), indicating that even low nitrate concentrations can pose negative effects under 424 

chronic exposures. Further, a time series experiment showed significant reductions in the 425 

aerobic scope of blueclaw crayfish (Cherax destructor) appear after five-days of exposure to 426 

50 and 100 mg L-1 NO3
− (Gomez Isaza et al., 2018) and suggests that prolonged elevations in 427 

nitrate are the most threatening to aquatic fauna. The results presented here call for research to 428 

investigate the short and long-term effects of nitrate in order to adequately predict the 429 

susceptibility of species to elevated nitrate concentrations.  430 

Life-History Stages 431 

Differences among life stages have been demonstrated in response to nitrate (Ortiz-432 

Santaliestra et al., 2006), a result consistent with our findings. We found that nitrate impacted 433 

on all life-stage, but effect sizes tended to be greatest in larval and juvenile exposed animals. 434 

This result may indicate that nitrate acts similarly regardless of life-stage (e.g. thyroid gland, 435 

metabolism, toxic accumulation) or that aquatic organisms may have a generally low capacity 436 
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for the detoxification and/or active excretion of nitrate. Embryonic exposure to nitrate appears 437 

benign, with studies reporting no net effect on hatching success. In addition, nitrate exposure 438 

during embryonic development has been found to have negligible impacts on hatchling length 439 

(Lou et al., 2016; Ortiz-Santaliestra et al., 2011a), days to hatching (Ortiz-Santaliestra et al., 440 

2011a; Ortiz-Santaliestra et al., 2011c), or developmental stage at hatching (Ortiz-Santaliestra 441 

et al., 2011a; Ortiz-Santaliestra et al., 2011c) further suggesting that nitrate does not pose a 442 

threat to this early life stage. It is possible that embryos are protected from the effects of 443 

nitrate by the jelly layer of fish and amphibian eggs being impermeable to nitrate. 444 

Additionally, the incomplete development of organ systems may act to protect embryos from 445 

the negative effects of nitrate. For example, the incomplete formation of the thyroid gland 446 

may protect embryos from endocrine disruption (Ortiz-Santaliestra et al., 2006), while the 447 

incomplete formation of the digestive system and/or the reduced abundance of symbiotic gut 448 

bacteria which transform nitrate into nitrite may decrease the formation of methaemoglobin in 449 

embryos exposed to nitrate (Hecnar, 1995; Huey and Beitinger 1982). Our results indicate 450 

that adult exposure to nitrate influenced few of our effect size estimates, but this could be due 451 

to the scarcity of data available on large bodied, mature animals. Indeed, adult exposure to 452 

nitrate is known to interfere with sexual cues (Secondi et al., 2013), secondary sexual traits 453 

(Secondi et al., 2009), and reduces male and female fecundity (Alonzo and Camargo, 2013; 454 

Kellock et al., 2018) and therefore nitrate exposure may impact adult life-stages in ways not 455 

considered in this analysis (e.g. reproductive rates). Future research would benefit from 456 

investigating the long-term effects of nitrate across multiple life stages and elucidate on 457 

possible defences against elevated nitrate.  458 

Taxonomic Grouping 459 

Differences in the sensitivity of nitrate among taxonomic groups tended to be 460 

negligible, with negative impact recorded among all three groups. Fish tended to be most 461 
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resilient of nitrate exposure, while effect size estimate were greater in amphibians and 462 

amphipods. Moreover, there is a high degree of variation between and within taxonomic 463 

groups. Between taxa, concentrations as low as 20 mg L-1 NO3
− can pose adverse effects to 464 

some invertebrates (Alonzo and Camargo, 2013; Soucek and Dickinson, 2016), fish (McGurk 465 

et al., 2006; Stormer et al., 1996), and amphibians (Baker and Waights, 1993; Ortiz-466 

Santaliestra et al., 2010), while others are relatively tolerant of high concentrations (> 500 mg 467 

L-1) (e.g. Benítez-Mora et al., 2014; Monsees et al., 2017; Soucek and Dickinson, 2012; Wang 468 

et al., 2015). Within species differences in nitrate sensitivity have also been documented, such 469 

as population (Johansson et al., 2001), sex (Kellock et al., 2018) and body size differences 470 

(Hamlin, 2006). However, the fact that some taxonomic groups (amphipods) were under-471 

represented or completely absent in some analyses may contribute to the general lack of an 472 

observed pattern. Thorough investigations of the effects of water-borne nitrate on non-473 

amphibian groups are required to gain a better understanding of how nitrate pollution may 474 

impact other taxa. Management practices likely need to consider species-specific nitrate 475 

tolerances and base environment guidelines on the most sensitive species living in an 476 

ecosystem. 477 

Nitrate salt 478 

Experimental design can alter effect sizes, for example the choice of experimental 479 

nitrate salt can have differential effects on aquatic taxa (Schuytema and Nebeker, 1999b), 480 

influencing the conclusions of scientist and policy makers. Nitrate concentrations are 481 

manipulated by dissolving nitrate salts in water, most commonly using ammonium nitrate 482 

(NH4NO3), potassium nitrate (KNO3) or sodium nitrate (NaNO3). The use of NaNO3 and 483 

KNO3 are often justified due to the relatively non-toxic ionic species of Na+  and K+, as 484 

compared to NH4NO3 (Schuytema and Nebeker, 1999a, b). However, NaNO3 and KNO3 can 485 

alter ionic composition/ratios of the test treatments and result in osmo-ionoregulatory 486 
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disturbances (Hrubec et al., 1996; Romano and Zeng, 2007). NH4NO3 is expected to be most 487 

toxic and result in larger effect sizes due to the interaction with the ammonium ion, known to 488 

be toxic to aquatic organisms even at low concentrations (Schuytema and Nebeker, 1999a). 489 

Indeed, our data indicate that exposure to NH4NO3 tended to have greater effect sizes on most 490 

response variables (activity, deformity rate and survival) than NaNO3 and KNO3, but did not 491 

affect growth. It is worth noting that no study included in the analysis exposed fish or 492 

crustaceans to NH4NO3 and few studies have used KNO3. As such, it is difficult to determine 493 

the effects NH4NO3 and KNO3 to aquatic taxa and warrants future investigation given their 494 

extensive use as agriculture fertilisers (Simplício et al., 2017).  495 

Nitrate and Interactions 496 

Multi-stressor studies are one of the largest knowledge deficiencies to ecological 497 

conservation (Christensen et al., 2006), and this knowledge gap is reflected in the factorial 498 

meta-analysis. Only sixteen studies were included in the factorial meta-analysis, and a strong 499 

taxonomic bias towards amphibians was apparent (fourteen studies). Other freshwater taxa 500 

(fish and amphipods) were underrepresented or completely absent from the factorial meta-501 

analysis. Given that taxonomic differences to nitrate exposure are limited, the results from the 502 

factorial meta-analysis may inform potential responses of other freshwater taxa. However, 503 

considering the myriad of stressors acting on freshwater ecosystems, there is need for a 504 

broader taxonomic evaluation of this research question.  505 

The factorial meta-analysis revealed that exposure to nitrate in combination with an 506 

additional stressor tends to affect survival in an antagonistic manner (i.e. less than the sum or 507 

the product of the two stressors). Additional stressors included both abiotic (e.g. pH, salinity, 508 

UV-B) and biotic (e.g. predators) variables that are likely to occur in tandem in 509 

anthropogenically-disturbed environments. The results reported here are consistent with those 510 

of a previous meta-analysis which found that the net effect of stressor interaction are most 511 
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frequently antagonistic (~41%) in freshwater ecosystems (Jackson et al., 2016). Although 512 

often seen as a “best case scenario”, antagonistic interactions are still concerning as the 513 

combined effects of two stressors are stronger than their individual effects and the 514 

management of two antagonistic stressors would require, in part, the relief of both stressors.  515 

Despite an overall prevalence of antagonistic interactions, our results show that the 516 

strength of the interaction varies depending on the stressors involved. Interactions among 517 

nitrate and other pollutants all had significant effects on survival. This finding is of particular 518 

significance as species living in anthropogenically disturbed environmental are increasing 519 

subject to novel chemical mixtures which often have unknown effects. Species may not be 520 

adapted- or have a poor capacity (e.g. detoxification or excretion mechanisms) to cope with 521 

man-made substances such as atrazine and Malathion (Hayes et al., 2006; Thrupp et al., 2018) 522 

and underscore the overall negative effects on survival reported here. In contrast, survival was 523 

not affected when nitrate exposure was combined with an abiotic variable. The notable 524 

exceptions were interactive effects of nitrate with aquatic oxygen levels and with low pH. The 525 

interaction between nitrate and dissolved oxygen levels resulted in the greatest effect size 526 

estimate on organismal survival (Ortiz-Santaliestra and Marco, 2015), likely because both 527 

stressors impact on oxygen availability. On the other hand, exposure to low pH may have 528 

facilitated the uptake of nitrate, as has been demonstrated for pollutants (Çoĝun and Kargin, 529 

2004), thereby increasing the concentration of nitrate with the body and impacting survival. 530 

However, nitrate – pH interactions have been tested using extreme low pH conditions (pH = 531 

5.0; Gomez Isaza et al., 2018; Hatch and Blaustein, 2000) and more intermediate pH values 532 

might show other responses (Meade and Perrone, 1980). Interaction between nitrate and biotic 533 

variables (e.g. predator exposure), which account for ~20% of the data included in the 534 

factorial meta-analysis, tended to report no interactive effect on survival likely because they 535 

exert their influence on different physiological traits (Ortiz-Santaliestra et al., 2011b; 536 
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Romansic et al., 2006; Smith and Dibble, 2012; Smith et al., 2013).  Overall, the strength and 537 

direction of stressor interactions depend on various other factors, including exposure duration, 538 

exposure intensity, and order of exposure, highlighting the uncertainty surrounding the 539 

impacts of multiple environmental stressors on species. As such, future research and meta-540 

analyses should consider the impacts of nitrate in combination with other stressors which act 541 

on similar physiological mechanisms or exacerbate nitrate uptake and consider their 542 

interactive effects on wide range of response variables including predator escape responses, 543 

behaviour, and reproductive output to adequately gauge a species susceptibility to multiple 544 

stressors.   545 

5. Conclusion 546 

Increased nitrate pollution as a result of anthropogenic global change represents a major issue 547 

for freshwater species. This study provides quantitative evidence that aquatic exposure to 548 

elevated nitrate concentrations negatively affects numerous behavioural, morphological and 549 

physiological traits. Further, we show that the effects of nitrate are not restricted to a 550 

particular life-history stage or taxon, suggesting that elevated nitrate concentrations may have 551 

cascading consequences on populations and communities living in nitrate-polluted freshwater 552 

environments. Sensitive species may be displaced from nitrate-polluted environments if 553 

nitrate inputs are not curbed, leading to the homogenisation of ecological communities. Our 554 

research highlights a heavy taxonomic bias towards amphibians and call for a broader 555 

evaluation of the effects of nitrate on various species, taxa and life-stages. Moreover, we have 556 

shown that there is a predominance for antagonistic interactions between nitrate and other 557 

ecological stressors in freshwater ecosystems, although, further research on stressors that act 558 

on the same physiological mechanism should be prioritised as they represent the greatest 559 

likelihood for “ecological surprises”. Together, the results of the meta-analysis provide 560 

compelling and consistent evidence that aquatically respiring organisms are negatively 561 
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impacted by exposure to nitrate and indicates the ability of nitrate to cause broad-scale 562 

ramifications within freshwater ecosystems. 563 
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Figure Captions: 828 

Figure 1. Overall effects on different response variables of freshwater taxa in response to 829 

waterborne nitrate exposure. The mean effect size (LnRR) and 95% confidence intervals are 830 

shown for separate analyses of activity, deformity rate, growth, hatching success, and 831 

survival. Sample sizes included in each analysis are shown in parenthesis. The zero (dotted) 832 

line indicates no effect, and mean effect sizes are considered significant when 95% 833 

confidence intervals do not overlap with the zero line. Activity, deformity rate, growth and 834 

survival are significantly reduced by nitrate exposure, denoted by asterisks (*P < 0.01, ** < 835 

0.001), but not hatching success. 836 

Figure 2. Taxonomic variation in effect sizes in response to waterborne nitrate exposure. The 837 

mean effect size (LnRR) and 95% confidence intervals for Activity, Deformity rate, Growth, 838 

Hatching Success, and Survival are shown. The horizontal zero (dotted) line indicates no 839 

effect, and mean effect sizes are considered significant when 95% confidence intervals do not 840 

overlap with the zero line. Statistical significance is indicated by an asterisk (*P < 0.05, ** < 841 

0.01). Sample sizes included in each analysis are shown in parenthesis. No data means that 842 

there are too few studies (n < 4) for comparison. Note the different scales on the y-axis of the 843 

graphs.  844 

Figure 3. Mean effect size (LnRR) of nitrate compound and life-history stage in response to 845 

nitrate exposure in freshwater taxa. Response variables include Activity, Deformity rate, 846 

Growth, and Survival. Data presented as mean ± 95% confidence intervals.  The zero (dotted) 847 

line indicates no effect, and mean effect size is considered significant when 95% confidence 848 

intervals do not cross overlap with the zero line. Statistical significance is indicated by an 849 

asterisk (*P < 0.05). Differences between groups are considered significant if confidence 850 

intervals do not overlap. Sample sizes included in each analysis are shown in parenthesis. No 851 

data (N.D.) means that there are too few studies (n < 4) for comparison. 852 



36 

Figure 4. Effects of nitrate, additional stressors (stressor 2) and their interaction on the 853 

survival of freshwater taxa. The mean effect size (LnRR) and 95% confidence intervals are 854 

shown for (A) nitrate-exposure only, stressor-2: average effect size of exposure to another 855 

stressor only, nitrate × stressor 2: the interaction between nitrate and additional stressors, and 856 

for the predicted interaction based on the multiplicative model. (B) Effect sizes for the 857 

interactions between nitrate and series of biotic and abiotic stressors. Statistical significance is 858 

indicated by an asterisk (*P < 0.05). Differences between groups are considered significant if 859 

confidence intervals do not overlap. 860 
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Table 1. Summary count of studies and data point included for each response varibale in the 878 

mata-analysis. Data counts are broken down for each taxonomic groups.  879 
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 899 

 Activity Deformity rate Growth Hatching success Survival 
 Studies Points Studies Points Studies Points Studies Points Studies Points 
Amphipods 0 0 0 0 3 24 0 0 5 37 
Amphibians 9 39 5 32 31 145 2 33 23 75 
Fish 1 4 2 13 12 65 2 15 7 58 
Total 10 43 7 45 46 234 4 48 35 170 
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Table 2. Relationship between nitrate concentration and experimental temperature on effect 900 

size (LnRR) for each response variable (activity, deformity rate, growth, hatching success and 901 

survival). Data represents continuous moderators considered in the mixed effects meta-902 

analyses. Significant results are highlighted in bold.  903 
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 923 

 924 

Response Variable 
Continuous  
moderator Slope z statistic P 

Activity   
 

Concentration  -0.27 -2.21 < 0.01 
Duration -0.72 -4.32 < 0.001 

 Temperature  -0.0001 -0.26 0.58 
Deformity rate 
 

Concentration    -0.16 -0.79  0.43 
Duration -1.72 -2.78 < 0.01 
Temperature  0.01 0.13 0.89 

Growth Concentration  -0.23 -29.82  < 0.001 
Duration -0.33 -4.64 < 0.001 
Temperature  0.005 0.56 0.57 

Hatching Success Concentration  -0.02 -0.26 0.79 
Duration 0.01 0.05 0.95 
Temperature  0.003 0.19 0.84 

Survival 
 

Concentration  -0.15 -4.36 < 0.001 
Duration -0.09 -3.82 < 0.001 
Temperature  -0.01 -3.97 <0.001 
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