This is the peer reviewed version of the following article: Soanes, K., Cranney, K., Dade, M.C., Edwards, A.M., Palavalli-Nettimi, R. (2019) How to work with children and animals: A guide for school-based citizen science in wildlife research, *Austral Ecology*, Vol 45(1), pp 3-14; which has been published in final form at https://doi.org/10.1111/aec.12836

This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

1	This is the accepted, pre-published version of the manuscript which has been published in					
2	Austral Ecology and can be found here <u>https://doi.org/10.1111/aec.12836</u> . Please cite as Soanes K,					
3	Cranney K, Dade MC, Edwards AM, Palavalli-Nettimi R and Doherty TS (2020) How to work with					
4	children and animals: A guide for school-based citizen science in wildlife research. Austral Ecology,					
5	45, 3¬14. Contact <u>ksoanes@unimelb.edu.au</u> .					
6						
7	How to work with children and animals: A guide for school-based citizen science in wildlife					
8	research					
9	Kylie Soanes ^{1*} , Kate Cranney ² , Marie C. Dade ³ , Amy M Edwards ⁴ , Ravindra Palavalli-Nettimi ⁵ and					
10	Tim S. Doherty ⁶					
11	1 School of Ecosystem and Forest Sciences, The University of Melbourne, Parkville, Victoria, 3010					
12	2 Centre of Excellence for Biosecurity Risk Analysis, The University of Melbourne, Parkville,					
13	Victoria, 3010 [Current address: CSIRO, Research Way, Clayton, Victoria, 3168]					
14	3 School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Queensland,					
15	4072, Australia [Current address: Department of Geography, McGill University, Montreal, QC H3A					
16	0B9, Canada]					
17	4 Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, Victoria, 3086					
18	[Current address: New South Wales National Parks and Wildlife Service, Dubbo, New South Wales.]					
19	5 Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109					
20	6 Centre for Integrative Ecology, School of Life and Environmental Sciences (Burwood Campus),					
21	Deakin University, Geelong, Victoria, 3126, Australia					
22	*corresponding author: <u>ksoanes@unimelb.edu.au</u>					
23	Acknowledgements					
24	Thanks to Angela Moles, Erin Roger, the CSIRO Scientist in Schools program, the New South Wales Office of					
25	Environment and Heritage, and the Ecological Society of Australia for their support and giving us the					
26	opportunity to conduct this work. We thank all of the schools, teachers and most importantly, the dedicated and					
27	enthusiastic students who participated in the project. Specifically, we thank the following teachers and their					
28	respective classes: Agatha Blatti, Coburg West Primary School; Janine Hannant, Lake Clarendon State School;					
29	Jenna Farrington and Thomas Norris, Montmorency South Primary School; Margaret Kroeger, Northside					

30 Montessori School; Ainslie Peszynski, Wattle Park Primary School; and, Melinda and Jacinta Cashen, Princes

31 Hill Primary.

32 Ethics and funding declarations

33 This work was carried out with approval from The University of Melbourne Animal Ethics Committee

34 (1714137.1) and Macquarie University Animal Ethics Committee (2017/009). Funding was received from the

35 New South Wales Office of Environmental Heritage and Ecological Society of Australia. Kylie Soanes is

36 supported by the Clean Air and Urban Landscapes Hub and Threatened Species Recovery Hub of the National

37 Environmental Science Program. Amy Edwards is supported by a School of Life Sciences, La Trobe University

38 Post-doctoral Fellowship.

39 Abstract

40 Engaging school students in wildlife research through citizen science projects can be a win-win for scientists 41 and educators. Not only does it provide a way for scientists to gather new data, but it can also contribute to 42 science education and help younger generations become more environmentally aware. However, wildlife 43 research can be challenging in the best of circumstances, and there are few guidelines available to help scientists 44 create successful citizen science projects for school students. This paper explores the opportunities and 45 challenges faced when developing school-based citizen science projects in wildlife research by synthesising two 46 sources of information. First, we conducted a small, school-based citizen science project that investigated the 47 effects of supplementary feeding on urban birds as a case study. Second, we reviewed the literature to develop a 48 database of school-based citizen science projects that address questions of wildlife ecology and conservation. 49 Based on these activities, we present five lessons for scientists considering a school-based citizen science 50 project. Overall, we found that school-based citizen science projects must be carefully designed to ensure 51 reliable data is collected, students remain engaged, and the project is achievable under the logistical constraints 52 presented by conducting wildlife research in a school environment. Ultimately, we conclude that school-based 53 citizen science projects can be a powerful way of collecting wildlife data while also contributing to the 54 education and development of environmentally aware students. 55

55

56 Key words: citizen science, urban biodiversity, school students, environmental education, bird feeding,

57 Introduction

58 Researchers within the fields of ecology and conservation have embraced citizen science for its potential to 59 generate scientific knowledge, engage the community in environmental issues, and foster connection to nature 60 (Dickinson et al. 2012; Frigerio et al. 2018; Pocock et al. 2017; Wals et al. 2014). There have been numerous 61 efforts to describe the breadth of citizen science research, understand how and why projects are undertaken, and 62 their scientific value (Kleinke et al. 2018; Kobori et al. 2016; Parsons et al. 2018; Pocock et al. 2017; 63 Silvertown 2009). Approaches are diverse and range from long-term ecological monitoring and nation-wide 64 species observations, to recording behaviours or sources of mortality (e.g. Frigerio et al. 2018; Gardiner et al. 65 2012; Vercayie and Herremans 2015). Projects may differ in their emphasis on educational goals, scientific 66 outputs, engagement and awareness raising, behaviour or environmental change, participant roles and level of 67 participation (Bonney et al. 2009; Dickinson et al. 2010; Wiggins and Crowston 2011). Despite the wide variety 68 of approaches, contexts and goals, a cornerstone of all citizen science projects is their capacity to generate 69 robust scientific data. Scientific outputs must remain a central goal in order for a project to be considered a 70 citizen science, as opposed to a science education, conservation volunteering, or awareness raising exercise. 71 72 Involving schools in citizen science projects represents an opportunity to engage younger audiences in 73 environmental research (Kobori et al. 2016). The benefits of engaging school students as citizen scientists 74 include improved scientific literacy, environmental awareness, leadership skills, and the potential to inspire new 75 generations of environmentally aware and active citizens (Ballard et al. 2017; Pitt and Schultz 2018; Wals et al. 76 2014). Alongside the scientific outputs, school-based citizen science projects should also provide educational

77 benefits to the student participants (Zoellick et al. 2012). However, striking the right balance between scientific 78 and educational outcomes may be difficult (Zoellick et al. 2012). Trade-offs occur when the needs of scientists 79 and the needs of students are at odds, and the project may be pulled to suit one goal at the expense of the other. 80

81 School-based citizen science projects in the field of wildlife research can engage younger audiences in 82 environmental science by tapping into children's natural fascination with animals. However, wild animals can 83 be difficult to work with and scientists may be cautious about bringing these challenges into a school setting. 84 For example, some study species and associated survey methods may be more appealing or feasible than others, 85 and the types of projects best suited to younger students are likely to differ to those for adults. Concern about 86 the degree to which the data will be reliable and publishable is another perceived barrier to the involvement of

87 school students in citizen science, particularly for younger age-groups (Burgess et al. 2017; Pitt and Schultz 88 2018; Trautmann et al. 2012). While students of all ages are often excited to work with wildlife, they may 89 quickly lose interest when faced with the reality that some methods of data collection are monotonous, 90 uneventful or indirect, which may compromise the integrity of the research findings. This concern is particularly 91 relevant to long-term wildlife monitoring programs, complicated experimental designs (e.g. before-after, 92 control-impact designs), methods that require accurate and repeated timing, or situations where the study species 93 is difficult to observe or detect. Operating within the constraints of a school environment also presents 94 operational and logistical challenges that may compromise data collection. For instance, field observations that 95 are required outside of school hours, or outside of the school grounds require an extra level of organisation. 96 Finally, the scientists themselves may have limited training in engaging and communicating with school-aged 97 children to deliver educational outcomes that align with curriculum requirements (McKeown 2003).

98

99 Understanding the possible challenges and benefits of embarking on a school-based citizen science project will 100 assist researchers to make an informed decision on whether to such a project is appropriate for their research 101 question, and to design projects that generate scientific data while providing an engaging and educational 102 experience to student scientists. Here, we explore the potential opportunities and challenges of school-based 103 citizen science in the field of wildlife research. We ask: 1) Can school-aged children contribute reliable data to a 104 citizen science project in wildlife research? 2) What factors influence the success of schools-based citizen 105 science in wildlife research? To address these questions, we first present the results of, and discuss our experience from, a citizen science research project conducted in six schools across Australia (Part 1). We then 106 107 review the literature to build a database of school-based citizen science projects involving wildlife research (Part 108 2). Finally, we synthesise this information into a set of five lessons to guide researchers who are considering 109 school-based citizen science.

110

PART 1: Field case study. An urban bird feeding experiment through the Scientists in Schools Program *Aims and context*

113 We established a school-based citizen science project as part of the Commonwealth Scientific and Industrial

114 Research Organisation (CSIRO) Scientists in Schools Program, in collaboration with the Ecological Society of

115 Australia and the New South Wales Office of Environment and Heritage. The goal was to engage primary

school students in ecological research by pairing six early-career ecologists (the authors) with schools across

117 Australia and conduct a research project in which the students collected the data as citizen scientists.

118

119 Our research project investigated how supplementary feeding affects wild birds in urban areas, as measured by 120 the presence, abundance, and richness of species before and after adding seed to feeding stations. Bird-feeding 121 is a common activity in urban environments and a topical conservation issue (Galbraith et al. 2015; Jones 2018) 122 and thus presented a good opportunity to teach students about urban biodiversity, ecology and wildlife 123 management. Supplementary feeding may affect the composition of bird communities by favouring larger, 124 aggressive birds to the detriment of other species, or by attracting new species to the area (Galbraith et al. 2015; 125 Reynolds et al. 2017). The research question posed to the students: how does adding bird seed change the 126 number and type of birds observed at school? We expected to see an increase in observations of granivorous 127 bird species after seed was added. 128 129 Methods 130 We used a before-after experiment to assess how supplementary feeding influenced bird species richness and 131 abundance. During the 'before' phase, 2-4 feeding stations (20 cm dishes suspended by wire chain) were hung in 132 trees at each school but no food was added. During the 'after' phase, students added a wild bird seed mix to the 133 feeding stations each morning. Six schools participated in the project: Wattle Park Primary School, Burwood, 134 Victoria; Montmorency South Primary School, Montmorency, Victoria; Princes Hill Primary, Parkville, 135 Victoria; Coburg West Primary School, Victoria; Lake Clarendon State School, Lake Clarendon, Queensland; 136 and Northside Montessori School, Sydney, New South Wales (Figure 1). This involved approximately 185 students (aged 9–12) in the data collection. Researchers guided the project during 3–5 visits throughout the 137 138 term, however the students collected the data independently following the initial training without the presence of 139 the researchers. 140 141 The students conducted 10-minute bird surveys at feedings stations for three weeks before and three weeks after seed was added (allowing a one week 'habituation' period in between) during a single 10-week school term (1st 142

143 May $- 22^{nd}$ July 2017). Two or three students collected data independently at each feeder during each survey.

- 144 Students were encouraged to conduct surveys each morning, however the frequency varied. For example, the
- degree to which the project was allocated class time differed among schools and as a result some students had to

adjust the timing of surveys to fit with their other school commitments. The total number of survey days at each
school ranged from 17 to 30. The number of survey days before and after seed was added ranged from 9 to 19
days before, and 6 to 15 days after. We collated the data collected by the students, adjusting counts to account
for multiple observers at the same feeder, and excluding all entries where the date and feeder location were not
provided.

151

152 We took several steps to help the students engage with the project and collect accurate data throughout the 153 course of the study. Prior to the data collection, each researcher visited their assigned school to meet the 154 students and introduce the project. Researchers discussed the arguments for and against bird feeding, the 155 underlying ecological principles, the aim of the project and study design. Students were encouraged to think 156 through why measurements should be taken before and after seed was added, and devise hypotheses about 157 which types of birds would likely respond to the feeders (e.g. birds that eat seeds). We toured the school 158 grounds as a group, and the students were asked to identify the best locations to place the bird feeders based on 159 their understanding of the aims of the study. During this tour, we further discussed the before-after approach and 160 the students' expectations of what changes they might observe, when, and why. During the first school visits, 161 we also trained the students in basic bird identification and survey methods, including a 'practice run' around 162 the school grounds using a draft datasheet. We observed how the students counted and identified species, used 163 group exercises to explore how counts were conducted and compared, and explained how to record bird size, 164 colour and behaviour to help identify species from field guides back in the classroom. This initial phase helped 165 us identify where the datasheet needed to be streamlined or clarified to allow for easy and accurate 166 identifications and counts before the official data collection commenced. For example, students had difficulty 167 distinguishing between sulphur-crested cockatoos and corellas, however as the difference between these species was not critical to our research question, we provided the simpler category of 'white cockatoos' on the data 168 169 sheet (Supplementary Material). This allowed us to maintain a focus on the aspects of the data collection that 170 were important to the research question, and discard those that led to unnecessary confusion. We developed an 171 easy-to-use data sheet with photos and checkboxes for each species likely to be observed in the local area (Supporting Information). A five-metre 'bird watch zone' was marked out around each feeding station using 172 173 either temporary spray paint on the ground or by assigning landmarks which guided students to only count birds 174 that were close to the feeding station.

176 *Reflection on scientific outcomes*

177 A total of 2,803 observations of 25 species were recorded during 328 survey days at the 16 feeders. The most 178common species observed were the Rainbow Lorikeet Trichoglossus moluccanus (n = 416 observations), 179 Crested Pigeon Ocyphaps lophotes (380), Noisy Miner Manorina melanocephala (349), introduced House 180 Sparrow Passer domesticus (286), Galah Eolophus roseicapilla (282), Raven Corvus spp. (114) and introduced 181 Spotted Dove Spilopelia chinensis (108). Of the remaining species, 1–97 observations were recorded. A further 182 90 and 192 observations were assigned to "Other" and "Unknown bird", respectively. Mean species richness across all surveys and feeders ranged from 0.89 species at Wattle Park to 4.85 at Montmorency South. Visual 183 184 inspection of the data (Figure 2) reveals mixed responses of bird abundance and species richness to the 185 provision of food and high variability within some schools. However, we had some concerns about the 186 ecological nature of these responses due to the limitations of the study design and data collection, and do not 187 consider the data appropriate for addressing our research question.

188

189 A key challenge in this project was maintaining the students' interest in the experimental component of the 190 study, which compromised the reliability of the before-after comparison and our confidence in the results. While 191 the students understood the goal of a before-after comparison, many were less interested when there was little or 192 no bird activity, particularly during the 'before' phase. During site visits, we noticed that some students were 193 enthusiastically recording all the birds they saw, regardless of whether they were within the 'bird watch zone'. 194 At four schools, we responded to this behaviour by amending the methods to also include 'around school' 195 surveys, where birds not within the 'bird watch zone' could be recorded on a separate sheet and thus not affect 196 the experiment. This allowed students to develop their bird watching and identification skills, even when 197 activity at the feeders was low. However, as we were only able to introduce this approach mid-way through the 198 study and at only four out of the six schools, we are not confident that the before-after bird observations were 199 collected as intended; birds who were unlikely to have ever encountered the feeding stations were included in 200 the total counts. Another concern was the sparse nature of the records. While the study was intended to consist 201 of daily, morning surveys over a seven-week period, most schools had fewer observation days than this. This 202 was particularly the case when the project was not embedded within designated class time and other school 203 requirements took precedence (e.g. roll call, sports days). In hindsight, we believe our study design was not 204 appropriate for the student's age and the low frequency of investigator visits.

206 *Reflection on educational outcomes for students*

207 Notwithstanding the above, the students were very engaged in the project and capable of independently 208 conducting the bird surveys. We did not formally assess the student's engagement, enjoyment or learning 209 outcomes as part of our study, and acknowledge that this would be a useful addition to future school-based 210 citizen science projects. Still, we noticed that very few students could identify bird species during the first 211 school visit and by the end of the project students could confidently identify common bird species by sight, call 212 or flight pattern. When birds could not be identified at first sight, the students developed the skills to note down 213 the defining features (such as size, call, behaviour and shape) and drew the birds so that we could search field 214 guides and identify them afterwards. We also found that it was important to maintain a flexible approach that 215 allowed us to respond to the changing needs of the students and school environment. For example, while we had 216 a base lesson plan for the project, each researcher tailored this based on the age, size and interests of their 217 classes, and the time available at each school. Some students created species 'fact sheets', bird watching clubs,

218 collected feathers, or completed other side projects to complement the research.

219

220 **PART 2:** Review of literature on wildlife research projects using school-based citizen science

221 Search methods and criteria

222 We searched the scientific literature for articles describing school-based citizen science projects involving 223 wildlife research to identify the degree to which such projects have led to published science. We defined 224 'school-based citizen science' as a project in which students at primary or secondary schools were primarily or 225 solely responsible for collecting data (as opposed to a broader citizen science program that may involve school-226 aged children). We acknowledge that many such programs will not be described within the scientific literature, 227 but we use peer-reviewed publications as a simple indicator of the degree to which school-scientist partnerships 228 generate scientific outcomes that are accessible to the broader research and management communities (Burgess 229 et al. 2017). We defined 'wildlife research' as any research project in which vertebrate or invertebrate fauna 230 were the response organism, with a specific focus on ecological and conservation research (i.e. not laboratory or 231 domestic animals).

232

233 We searched Scopus using the terms "citizen science" OR "citizen scientist" AND "ecol*" OR "conserv*" (10th

July 2018), which yielded 950 documents. Further refining this search using the terms "children" or "student"

returned 74 and 77 documents, respectively. We screened the title and abstract of each paper to create a shortlist

236 of articles in which school students conducted research and fauna were the response measure. We inspected the 237 literature cited within these documents to identify additional articles of relevance. Articles were excluded from 238 consideration if the data was not collected by school students, the measured response was something other than 239 fauna (i.e. flora, abiotic conditions), the work was presented in a language other than English, or the full text 240 was not accessible. We excluded several projects that were peripherally related to the topic but were out of the 241 scope of our main investigation. These included projects that were school-based but not focused on wildlife, 242 such as research into the fields of forestry and urban trees (e.g. Galloway et al. 2006), marine debris (e.g. 243 Hidalgo-Ruz and Thiel 2013), or water and air quality (e.g. Giles and Parson 2001; Nali and Lorenzini 2007). 244 Several other projects included young people and students among the participants, but were not focused on 245 citizen science in a school environment (e.g. Gardiner et al. 2012; Parsons et al. 2018), or presented classroom 246 modules for broader citizen science projects of which the results were not yet published (e.g. Ezran et al. 2017; 247 Lucky et al. 2014; Wells 2010). 248

249 Overview of projects

We identified 18 school-based citizen science projects from 15 documents in which students from primary or secondary schools collected data that contributed to research on the ecology or conservation of wildlife (Table

1). These occurred as standalone papers or were presented as case-studies in reviews or editorial pieces.

253

254 <u>Taxa studied and research activities</u>

255 The school-based studies described research on benthic intertidal communities, lizards, large ungulates and 256 carnivores, migratory birds, small mammals, macroinvertebrates, butterflies, bees and other pollinating insects 257 (Table 1). Observations were not limited to within the school grounds, with several research projects using field 258 trips, school-bus commutes, or the students' backyards as sources of data. The diversity of methods allowed 259 students to conduct research on species that might otherwise be difficult or dangerous to observe. For example, 260 Weckel et al. (2010) investigated the distribution of human-covote interactions in suburban New York by 261 asking school students to interview their parents, and Galloway et al. (2011) had students count large mammals 262 observed during their morning bus commute.

263

Most studies engaged students in simple observational methods to report animal behaviour, human-wildlife relationships, or exploring relationships between environmental features and species occurrence. Only two

266 studies included more complex manipulative experiments, one investigating the influence of colour signals on 267 foraging in bumblebees (Blackawton et al. 2011), and the other investigating the influence of substrate 268 characteristics on maternal nest site choice in lizards (Reedy et al. 2012). In studies of invertebrates, such as 269 garden insects or intertidal communities, students had direct contact with wildlife and conducted the trapping, 270 handling and observations (e.g. Cox et al. 2012; Osborn et al. 2005; Saunders et al. 2018). Students were rarely 271 in direct contact with vertebrate wildlife, and instead observed the behaviours of individuals that had been 272 previously marked by researchers, recorded tracks and other signs of wildlife, or interviewed local residents 273 about their perspectives on wildlife (e.g Frigerio et al. 2018; Weckel et al. 2010). Only two articles described 274 students handling vertebrate wildlife, in which students were involved in trapping, handling and processing 275 lizards (Matthews et al. 2014; Reedy et al. 2012). One study included DNA barcoding, in which the students 276 collected the samples and sent them away to laboratory for analysis (Henter et al. 2016).

277

278 <u>Models of scientist-student interaction</u>

279 The degree of contact and engagement between scientists and students varied widely. Examples ranged from 280 students filling out and returning simple proforma and having little contact with the scientist (Henter et al. 2016; 281 Weckel et al. 2010), to supervised field-trips where the scientists were present during the data collection 282 (Freiwald et al. 2018), to student-led research where students wrote the final published paper (Blackawton et al. 283 2011). Lower input from scientists was often associated with programs that provided intensive teacher training 284 and curriculum resources, or those had simpler methods that could be easily completed with minimal 285 supervision. The more intensive school-scientist relationships usually involved internships or were supported by 286 dedicated citizen science programs (e.g. Matthews et al. 2014; Pitt and Schultz 2018) Several studies co-287 developed the research questions with the school or involved the students in the data analysis and writing of the 288 paper (Blackawton et al. 2011; Saunders et al. 2018). Other programs included teacher training and formal 289 curriculum support to foster long-term partnerships (Cox et al. 2012; Freiwald et al. 2018; Frigerio et al. 2018) 290 or published 'teaching notes' to help guide implementation across multiple schools (Matthews et al. 2014). 291 Providing this additional support to teachers helped to improve the longevity of the project and quality of data. 292 293 Approaches to maintaining scientific outcomes

294 The school-based citizen science projects we reviewed clearly demonstrated the scientific value of research

295 conducted by student citizen scientists. Data generated through these projects resulted in an improved

understanding of species ecology and behaviour (Blackawton *et al.* 2011; Reedy *et al.* 2012), contributions to
large-scale biodiversity databases (Henter *et al.* 2016; Matthews *et al.* 2014), and were used to inform wildlife
management (Pitt and Schultz 2018; Zoellick *et al.* 2012). For example, students citizen scientists in the School
Malaise Trap Project helped add the DNA barcodes of more than 1000 new species to the Barcode of Life
Database (Henter *et al.* 2016). Several researchers explicitly note that the quality of data collected by students
was comparable to that collected by professional scientists (Frigerio *et al.* 2018; Osborn *et al.* 2005; Pitt and
Schultz 2018).

303

304 Common approaches to maintaining data quality included age-appropriate training; protocols with well-defined, 305 relevant parameters; regular visits from the partner scientist; recording inter-observer reliability; and verifying 306 data using experts (Cox et al. 2012; Freiwald et al. 2018; Frigerio et al. 2018; Le Féon et al. 2016). Cross-307 validation methods were an important approach to ensuring confidence in the data collected by student citizen 308 scientists. Approaches to data validation were described for 11 projects, and included the use of multiple 309 observers and replicate counts (Cox et al. 2012; Freiwald et al. 2018; Osborn et al. 2005), comparison to data 310 collected by scientists (Osborn et al. 2005), or verification of data points by teachers or scientists (Frigerio et al. 311 2018; Pitt and Schultz 2018). Several studies introduced frameworks for obtaining high-quality data through 312 school-based citizen science, highlighting the importance of exciting students and allowing buy-in, training, 313 simplified and tailored protocols, cross-validation methods, and validity assessment (Cox et al. 2012; Osborn et 314 al. 2005; Zoellick et al. 2012).

315

316 A key source of uncertainty in wildlife research was the capacity of students to distinguish between similar 317 looking species, identify rare species, or record nuanced behavioural responses. Some researchers tackled this 318 problem by simplifying the list of species under observation. For example, students were directed to record 319 observations from a prescribed list that included only those species which could be reliably identified, excluding 320 species that were uncommon, or grouping together those that were difficult to distinguish (Freiwald et al. 2018; 321 Osborn et al. 2005). Other researchers adopted a community-level rather than species-level approach, grouping 322 insects into simpler categories (e.g. flies, bees and wasps) based on features that were simpler to accurately 323 identify (Saunders et al. 2018). Simplifying the data collection in this way was an attempt minimise errors by 324 collecting only the information that is critical to answering the research question rather than a 'laundry list' of 325 observations just in case they are useful. However, oversimplification may limit the capacity of conservation

326 studies that need to record rare species, studies where species of similar appearance have different ecological 327 responses, or studies of subtle behaviours (Freiwald et al. 2018). Alternative approaches were to train students 328 in the subtleties of each species through repeated exposure (Cox et al. 2012; Matthews et al. 2014) or have more 329 complicated identifications completed by scientists (Le Féon et al. 2016). For example, in Matthews et al. 330 (2014), researchers were concerned that students would not be able to distinguish between three similar-looking 331 species of skink. To combat this, the researchers first used a pet bearded dragon to familiarise students with the 332 general anatomical features of lizards on a larger scale. The researchers then brought native skinks into the 333 classroom, allowing the students to observe and compare the distinguishing features of each species first-hand 334 and refine their identification skills, even if the subsequent field surveys turned out to be unsuccessful.

335

336 Constraints and opportunities for scientists

337 There were several benefits to scientists engaging in school-based citizen science programs. For example, such 338 programs provide the opportunity to access biodiversity in urban areas that would typically be unavailable or 339 difficult to access, such as school grounds and urban backyards (Frigerio et al. 2018; Saunders et al. 2018; 340 Weckel et al. 2010). Perhaps most promising is the opportunity for school-based citizen science projects to 341 increase the temporal or spatial scales of data collection, with projects continuing over many years or including 342 multiple schools. For example, the monitoring of species in rocky intertidal habitats in California's Monterey 343 Bay National Marine Sanctuary (USA) will form part of a long-term monitoring program generating data for the 344 National Oceanic and Atmospheric Administration, with new classes visiting the sites using the same protocols 345 each year. Similarly, the Acadia Learning Project has involved eleven schools and thousands of students over 346 large spatial scales to identify landscape-scale patterns of mercury levels in stream macroinvertebrates (Zoellick 347 et al. 2012).

348

However, the school environment also placed constraints on the type of species and study that can be conducted.
The rigidity of the school environment or curriculum can be a barrier to obtaining reliable data (Frigerio *et al.*2018; Saunders *et al.* 2018). For example, surveys to observe social interactions of northern bald ibis
(*Geronticus eremita*) were best conducted in the early morning, however the class time allocated for this activity
occurred in the late-morning, meaning the data collected by the students were not informative (Frigerio *et al.*2018). Researchers noted a trade-off between making it easy for school students to be involved and maintaining
the integrity of the data, and, thus, the capacity of the program to achieve the scientific outcomes as intended

356 (Freiwald et al. 2018; Le Féon et al. 2016; Osborn et al. 2005). For example, Osborn et al. (2005) provided 357 flexible lesson plans, enabling teachers to tailor their involvement in the monitoring of benthic intertidal 358 communities based on the needs of the class. However, they cautioned that too much flexibility may 359 compromise the consistency of the monitoring, with some sites surveyed more frequently than others due to 360 ease of access. Similarly, simplifying the methods to enhance student participation can lead to the loss of 361 valuable information and limit the types of research questions that can be explored (Freiwald *et al.* 2018; Le 362 Féon et al. 2016; Osborn et al. 2005). Finally, access to the target species may also limit the capacity of school-363 based citizen science in wildlife research. When the target species can only be found outside of the school 364 grounds, field trips and excursions can be logistically difficult and costly (Cox et al. 2012).

365

366 Engagement and educational outcomes

367 Six of the 18 examples of school-based citizen science projects described an evaluation of student or teacher 368 experience of the program (Frigerio et al. 2018; Henter et al. 2016; Pitt and Schultz 2018; Zoellick et al. 2012). 369 Educational and engagement outcomes were most commonly assessed through before-after surveys of students 370 or teachers, determining the degree to which students learned (Zoellick et al. 2012), the aspects of the science 371 that they found most interesting (Frigerio et al. 2018), or the teachers' perspectives of how the program could be 372 improved in future iterations (Cox et al. 2012). For example, Pitt and Schultz (2018) found that students showed 373 a greater interest in careers in natural resource management after participating in research projects with the US 374 Forest Service, while Frigerio et al. (2018) found that students were least interested in data entry and most 375 excited by tasks involving specialised equipment. Researchers also noted the project's alignment with the 376 mandated curriculum requirements, either by embedding the project within the curriculum (Cox et al. 2012; 377 Freiwald et al. 2018; Henter et al. 2016; Pitt and Schultz 2018) or informal feedback from teachers after the 378 work was completed (Saunders et al. 2018).

379

While formal assessments were rarely described, anecdotal examples of student engagement were common (Cox *et al.* 2012; Osborn *et al.* 2005; Saunders *et al.* 2018). There were several examples of students taking ownership of the projects and independently pursuing their own research questions (Osborn *et al.* 2005; Zoellick *et al.* 2012). Scientists often took additional steps to enhance engagement and learning for students including art and drawing assignments, interactive presentations and quiz games, field excursions, and emphasising their role as citizen scientists (Frigerio *et al.* 2018; Osborn *et al.* 2005). In Blackawton *et al.*(2011), the students were 386 engaged throughout the entire process, not only devising the research questions and carrying out the data

387 collection, but also writing the published paper, complete with hand-drawn figures.

388

389 SYNTHESIS

390 Overall, our review suggests that school-based citizen science projects that result in peer-reviewed scientific 391 publications are relatively rare, but the few examples we found illustrate the potential for student citizen 392 scientists to generate robust data and indicate that many of the perceived obstacles can be overcome through 393 careful project design. The scarcity of school-based citizen science projects may reflect the infrequency with 394 which such projects take place, the degree to which such projects generate publishable results, or the frequency 395 with which they intend to generate data for peer-reviewed publications. Certainly, both our case study and the 396 literature review highlight the difficulties in generating robust data from school-based citizen science projects 397 and there are undoubtedly many unpublished examples of school-based citizen science projects that failed to generate the quality of data expected. These difficulties may lead scientists to avoid engaging with schools, or to 398 399 do so for educational rather than scientific reasons. However, our research suggests that the main reasons 400 school-based citizen sciences fail is because the science was not tailored to engage students to collect quality 401 data, or the educational and engagement aspects were over-emphasised at the expense of data integrity. Through 402 careful consideration, these challenges can be overcome, enabling student citizen scientists to generate robust 403 scientific data. To that end, we synthesise five key lessons from our experience and the broader literature to help 404 researchers maximise both the scientific and educational outcomes of school-based citizen science projects. 405 These are of particular relevance to wildlife research but will also be valuable to school-based citizen science 406 projects more broadly.

407 1. Most species can be suitable subjects with creative methods: While there are some practical and 408 ethical considerations to bear in mind, most wildlife taxa can be appropriate study subjects for school-409 based citizen science. The methods should be tailored to ensure that they are appropriate to the age of 410 the students, allowing them to engage with the species in a way that is safe and interesting, yet still contributing to reliable data. The use of virtual-based activities, camera-traps, and non-invasive 411 412 sampling methods could further expand the range of taxa under investigation. However, the 413 misidentification of rare species has important implications of many conservation studies, and therefore 414 should be carefully managed through training if this is a key goal.

415 **Robust data can be collected if appropriate measures are used:** Age-appropriate training, regular 2. 416 validation, and simplified protocols all serve to enable robust data collection, allowing the data 417 collected by student citizen scientists to be comparable with other studies. Striking the right balance 418 between independent data collection and scientist oversight is critical to ensuring that the data collected 419 meet the scientific goals of the project, and that the students benefit from meaningful engagement with 420 a working scientist (Gardiner et al. 2012; Le Féon et al. 2016; Zoellick et al. 2012). When deciding 421 how much time to invest, it is worth remembering that the interactions with the working scientists are 422 often the student's most popular and important aspects of the experience (Henter et al. 2016; 423 Trautmann et al. 2012; Zoellick et al. 2012).

424 3. Engagement and educational outcomes should be explicitly measured: Educational outcomes are an 425 important component of school-based citizen science projects and as such the ability of the project to 426 deliver these outcomes should be formally assessed rather than assumed. Simple before-after surveys 427 that assess learning, interest, and behaviour change can be used to improve the design and delivery of programs by determining which aspects of the research were enjoyable, well-understood, or easy to 428 complete within the school routine (e.g. Frigerio et al. 2018; Pitt and Schultz 2018). However, it should 429 430 be noted that when the students become the data, rather than the data collectors, appropriate ethics 431 approvals and processes should be considered, and we recommend consulting or collaborating with 432 social scientists or education researchers where possible.

433 4. Establish curriculum support and formal partnerships: Formal partnerships can ensure that both the schools and scientists have access to the infrastructure and administrative support required to develop 434 meaningful and sustainable projects. This can be achieved by working with organisations that have 435 436 existing science education and outreach programs (Ballard et al. 2017; Zoellick et al. 2012) or establishing initiatives within the university to support scientists in schools (e.g. Henter et al. 2016; 437 438 Matthews et al. 2014). Some training may be required to assist teachers to lead the students through the 439 scientific aspects of the project, or to help scientists improve their teaching and communication skills (Frigerio et al. 2018; McKeown 2003). Working with schools to embed the research project within the 440 441 curriculum can also help to ensure that the data collection is given adequate time and suits the survey methods for the target species, and that the project is designed to meet educational outcomes 442 443 (McKeown 2003; Trautmann et al. 2012; Zoellick et al. 2012).

444 5. Keeping students interested is critical to success: If the student citizen scientists find their role in the 445 research tedious, confusing or too difficult, they may disengage from the project and be unlikely to 446 generate robust data. Allowing the students to be part of the process by contributing ideas and research 447 questions helps to improve learning outcomes, and fosters a sense of ownership and investment in the 448 project (Trautmann et al. 2012; Zoellick et al. 2012). Researchers should make an effort to engage 449 students by ensuring data is fed back into the classroom and providing students the opportunity to 450 analyse and present the data themselves (e.g. Blackawton et al. 2011; Henter et al. 2016). Consider 451 including simple methods that maintain interest and engagement, such as collection of feathers and 452 shed exoskeletons, or observations of tracks and scats.

453

454 While our case study did not deliver the scientific outcomes intended, careful review of the process in light of 455 the lessons above suggests how we could design a more successful approach in future. Changes would include: 456 increasing the level of scientist-supervision to match the complexity of the experimental; formally comparing student engagement and learning outcomes before and after the project; more clearly communicating the 457 458 research findings back to the schools and highlighting each school's contribution in the scope of the broader 459 study (e.g. "What did the other schools find out?"). We would also work to establish a longer-term relationship 460 with the schools to co-develop the project, gaining a better understanding of the research methods and scientific 461 outcomes that would be possible, and the educational outcomes that would best match the current curriculum 462 requirements. Such approaches could help achieve more robust scientific results, as well as improved 463 educational outcomes for students.

464

465 Bringing citizen-science programs into schools has the capacity to deliver research, education and 466 environmental outcomes, and taps into student's natural fascination with wildlife. School-based citizen science 467 can also benefit researchers by providing the capacity to conduct long-term studies (e.g. working with multiple 468 classes over multiple years, Freiwald et al. 2018), coordinated distributed experiments (e.g. implementing the 469 same research protocol across multiple schools, Henter et al. 2016), and access to sites that are rarely studied yet 470 may have important biodiversity value and conservation opportunities (e.g. private land or urban environments, 471 Frigerio et al. 2018; Saunders et al. 2018). However, it is important that researchers maintain clear goals and 472 realistic expectations—not all projects, or all species, will be suitable—and we recommend starting with a pilot 473 program so that the approach and expectations can be revised early on. The database of studies provided here

- 474 serve as an excellent source of reference for researchers embarking on school-based citizen science projects, and
- 475 further guidance on educational and curriculum aspects can be found here (McKeown 2003; Trautmann *et al.*
- 476 2012). Ultimately, engaging school students in wildlife research will be a balancing act between scientific and
- 477 educational outcomes.
- 478

479 **Tables and Figures**

480 Table 1. Results of literature search for school-based citizen science projects involving wildlife.

Project	Aim of wildlife research	Student level	Country	Reference
The year of the greylag geese	Long-term research into social behaviour of greylag geese at the Konrad Lorenz Research Station	Primary and secondary school	Austria	In Frigerio <i>et al.</i> (2018)
Nature in your backyard	Investigating the role of gardens in enhancing backyard biodiversity, including surveys for hedgehogs, birds and pollinating insects.	Primary and secondary school	Austria	In Frigerio <i>et al.</i> (2018)
Social alliance in bald ibis	Movement ecology, social behaviour, stress and parasite load of bald ibis.	Primary and secondary school	Austria	In Frigerio <i>et al.</i> (2018)
Our Project in Hawaii's Intertidal (OPIHI)	Describe the distribution and abundance of introduced and native species in benthic rocky intertidal communities	Secondary school	Hawaii	Cox <i>et al.</i> (2012)
School Malaise trap program	Explore insect diversity around school yard using Malaise traps and DNA barcoding	Primary and secondary school	Canada	Henter <i>et al.</i> (2016); Steinke <i>et al.</i> (2017)
Long-term Monitoring Program and Experimental Training for Students (LiMPETS)	Monitoring rocky shore and sandy beach intertidal habitats, measuring presence-absence and number of species such as sea stars, limpets and crabs within National Marine Sanctuaries.	Primary and secondary school	USA	Freiwald <i>et al.</i> (2018); Ballard <i>et al.</i> <i>al.</i> (2017)
Monterey Bay National Marine Sanctuary	Monitoring long-term changes in rocky intertidal communities	Secondary	USA	Osborn <i>et al.</i> (2005)
Herpetological Research Experience	Mark-recapture study of lizards to investigate species diversity and distribution.	Secondary school	USA	Matthews <i>et al.</i> (2014)
Alaska Natural Science Course	A range of longitudinal research projects, including collecting data on wildlife abundance, density and distribution. Students develop research projects over semesters in collaboration with the US Forest Service,	Secondary school	USA	Pitt et al. (2018)
Montana Youth Forest Monitoring Program	Student internships with the US Forest Service to learn about forest management and help conduct a variety of wildlife monitoring projects.	Secondary school	USA	Pitt et al. (2018)
Delta Science Apprenticeship (Colorado)	Student apprenticeships with the US Forest Service, focusing on learning habitat restoration and wildlife monitoring skills.	Secondary school	USA	Pitt et al. (2018)
Human coyote interface	Mapping human-coyote interaction in urban environment through students interviewing their parents.	Primary and secondary school	USA	Weckel <i>et al.</i> (2010)
Acadia Learning Project	Long-term sampling and mapping of mercury levels in macroinvertebrates.	Secondary school	USA	Zoellick <i>et al.</i> (2012)
Bees in agricultural landscapes	Students collected wild bees to investigate changes in species assemblages under global change in agricultural landscapes	Secondary school	France	Le Feon <i>et al.</i> (2016)

Habitat for urban pollinators	Effect of habitat type and trap colour on urban insect pollinator communities	Primary school	Australia	Saunders <i>et al.</i> (2018)
Maternal nest site choice in lizards	Experimental test of the effect of maternal nest site choice (substrate moisture content) on offspring fitness in anole lizards.	Secondary school	USA	Reedy (2012)
Blackawton bees	Behavioural ecology, including colour vision and foraging in bumblebees	Primary	UK	Blackawton <i>et al.</i> (2011)

- MS, Montmorency South Primary School; NM, Northside Montessori School; PH, Princes Hill Primary;
- WC, Coburg West Primary School; WP, Wattle Park Primary School.

Figure 2. Mean (±SE) bird abundance and species richness before and after seed was added to feeders.
The values for each school are means across all feeders and surveys within each of the before and after
periods. LC, Lake Clarendon State School; MS, Montmorency South Primary School; NM, Northside
Montessori School; PH, Princes Hill Primary; WC, Coburg West Primary School; WP, Wattle Park

495 Primary School.

Ballard H. L., Dixon C. G. & Harris E. M. (2017) Youth-focused citizen science: Examining the role of environmental science learning and agency for conservation. *Biol. Conserv.* 208, 65-75.
Blackawton P., Airzee S., Allen A., Baker S., Berrow A., Blair C., Churchill M., Coles J., Cumming R.-J. & Fraquelli L. (2011) Blackawton bees. *Biology Letters* 7, 168-72.
Bonney R., Cooper C. B., Dickinson J., Kelling S., Phillips T., Rosenberg K. V. & Shirk J. (2009) Citizen science: A developing tool for expanding science knowledge and scientific literacy. *Bioscience* 59, 977 - 84.
Burgess H., DeBey L., Froehlich H., Schmidt N., Theobald E., Ettinger A., HilleRisLambers J., Tewksbury J. & Parrish I. (2017) The science of citizen science: Exploring barriers to use as a primary research tool. *Biol.*

References

Parrish J. (2017) The science of citizen science: Exploring barriers to use as a primary research tool. *Biol. Conserv.* 208, 113-20.

496

- 507 Cox T., Philippoff J., Baumgartner E. & Smith C. (2012) Expert variability provides perspective on the 508 strengths and weaknesses of citizen-driven intertidal monitoring program. *Ecol. Appl.* **22**, 1201-12.
- 509 Dickinson J. L., Shirk J., Bonter D., Bonney R., Crain R. L., Martin J., Phillips T. & Purcell K. (2012) The
- current state of citizen science as a tool for ecological research and public engagement. *Frontiers in Ecology* and the Environment 10, 291-7.
- 512 Dickinson J. L., Zuckerberg B. & Bonter D. N. (2010) Citizen science as an ecological research tool: challenges 513 and benefits. *Annual Review of Ecology & Systematics* **41**, 149 - 72.
- 514 Ezran C., Karanewsky C. J., Pendleton J. L., Sholtz A., Krasnow M. R., Willick J., Razafindrakoto A., Zohdy
- S., Albertelli M. A. & Krasnow M. A. (2017) The mouse lemur, a genetic model organism for primate biology,
 behavior, and health. *Genetics* 206, 651-64.

Freiwald J., Meyer R., Caselle J. E., Blanchette C. A., Hovel K., Neilson D., Dugan J., Altstatt J., Nielsen K. &
Bursek J. (2018) Citizen science monitoring of marine protected areas: Case studies and recommendations for
integration into monitoring programs. *Marine Ecology* 39, e12470.

- Frigerio D., Pipek P., Kimmig S., Winter S., Melzheimer J., Diblíková L., Wachter B. & Richter A. (2018)
 Citizen science and wildlife biology: Synergies and challenges. *Ethology* 124, 365-77.
- Galbraith J. A., Beggs J. R., Jones D. N. & Stanley M. C. (2015) Supplementary feeding restructures urban bird
 communities. *Proceedings of the National Academy of Sciences*, 201501489.
- Galloway A. W., Hickey R. J. & Koehler G. M. (2011) A survey of ungulates by students along rural school bus
 routes. *Society and Natural Resources* 24, 201-4.
- 526 Galloway A. W., Tudor M. T. & HAEGEN W. M. V. (2006) The reliability of citizen science: a case study of 527 Oregon white oak stand surveys. *Wildlife Society Bulletin* **34**, 1425-9.

- 528 Gardiner M. M., Allee L. L., Brown P. M., Losey J. E., Roy H. E. & Smyth R. R. (2012) Lessons from lady
- beetles: accuracy of monitoring data from US and UK citizen-science programs. *Frontiers in Ecology and the Environment* 10, 471-6.
- Giles J. & Parson C. (2001) 'Citizen scientists' at work on the Chicago River. *Teaching Geography* 26, 77-80.
- Henter H. J., Imondi R., James K., Spencer D. & Steinke D. (2016) DNA barcoding in diverse educational
 settings: five case studies. *Phil. Trans. R. Soc. B* 371, 20150340.
- Hidalgo-Ruz V. & Thiel M. (2013) Distribution and abundance of small plastic debris on beaches in the SE
 Pacific (Chile): a study supported by a citizen science project. *Marine environmental research* 87, 12-8.
- Jones D. (2018) The Birds at My Table: Why We Feed Wild Birds and why it Matters. Cornell University Press.
- Kleinke B., Prajzner S., Gordon C., Hoekstra N., Kautz A. & Gardiner M. (2018) Identifying Barriers to Citizen
 Scientist Retention When Measuring Pollination Services. *Citizen Science: Theory and Practice* 3.
- 539 Kobori H., Dickinson J. L., Washitani I., Sakurai R., Amano T., Komatsu N., Kitamura W., Takagawa S.,
- 540 Koyama K. & Ogawara T. (2016) Citizen science: a new approach to advance ecology, education, and
- 541 conservation. *Ecological research* **31**, 1-19.
- 542 Le Féon V., Henry M., Guilbaud L., Coiffait-Gombault C., Dufrêne E., Kolodziejczyk E., Kuhlmann M.,
- Requier F. & Vaissière B. E. (2016) An expert-assisted citizen science program involving agricultural high
 schools provides national patterns on bee species assemblages. *Journal of insect conservation* 20, 905-18.
- Lucky A., Savage A. M., Nichols L. M., Castracani C., Shell L., Grasso D. A., Mori A. & Dunn R. R. (2014)
 Ecologists, educators, and writers collaborate with the public to assess backyard diversity in The School of Ants
 Project. *Ecosphere* 5, 1-23.
- 548 Matthews C. E., Huffling L. D. & Benavides A. (2014) The ins & outs of developing a field-based science 549 project: Learning by lassoing lizards. *The American Biology Teacher* **76**, 320-6.
- 550 McKeown R. (2003) Working with K–12 schools: Insights for scientists. *Bioscience* 53, 870-5.
- Nali C. & Lorenzini G. (2007) Air quality survey carried out by schoolchildren: an innovative tool for urban
 planning. *Environmental monitoring and assessment* 131, 201-10.
- 553 Osborn D. A., Pearse J. S. & Roe C. A. (2005) Monitoring rocky intertidal shorelines: a role for the public in
- resource management. In: *California and the World Ocean'02: Revisiting and Revising California's Ocean Agenda* pp. 624-36.
- 555 ingenaa pp. 62 i 56.
- Parsons A. W., Goforth C., Costello R. & Kays R. (2018) The value of citizen science for ecological monitoring
 of mammals. *PeerJ* 6, e4536.

- Pitt A. N. & Schultz C. A. (2018) Youth-based citizen science monitoring: Case studies from three national
 forests. *Journal of Forestry* 116, 109-16.
- Pocock M. J., Tweddle J. C., Savage J., Robinson L. D. & Roy H. E. (2017) The diversity and evolution of
 ecological and environmental citizen science. *PloS one* 12, e0172579.
- Reedy A. M., Zaragoza D. & Warner D. A. (2012) Maternally chosen nest sites positively affect multiple
 components of offspring fitness in a lizard. *Behavioral Ecology* 24, 39-46.
- Reynolds S. J., Galbraith J. A., Smith J. A. & Jones D. N. (2017) Garden bird feeding: insights and prospects from a north-south comparison of this global urban phenomenon. *Frontiers in Ecology and Evolution* **5**, 24.
- Saunders M. E., Roger E., Geary W. L., Meredith F., Welbourne D. J., Bako A., Canavan E., Herro F., Herron
 C. & Hung O. (2018) Citizen science in schools: Engaging students in research on urban habitat for pollinators. *Austral Ecology* 43, 635-42.
- 569 Silvertown J. (2009) A new dawn for citizen science. *Trends in ecology & evolution* 24, 467-71.
- 570 Steinke D., Breton V., Berzitis E. & Hebert P. D. (2017) The School Malaise Trap Program: coupling 571 educational outreach with scientific discovery. *PLoS biology* **15**, e2001829.
- Trautmann N. M., Shirk J. L., Fee J. & Krasny M. E. (2012) Who poses the question. *Citizen science: Public participation in environmental research*, 179-90.
- Vercayie D. & Herremans M. (2015) Citizen science and smartphones take roadkill monitoring to the next level.
 Nature Conservation 11, 29-40.
- Wals A. E., Brody M., Dillon J. & Stevenson R. B. (2014) Convergence between science and environmental
 education. *Science* 344, 583-4.
- Weckel M. E., Mack D., Nagy C., Christie R. & Wincorn A. (2010) Using citizen science to map Human—
 Coyote interaction in suburban New York, USA. *The Journal of Wildlife Management* 74, 1163-71.
- Wells C. N. (2010) An ecological field lab for tracking monarch butterflies & their parasites. *The American Biology Teacher* 72, 339-44.
- Wiggins A. & Crowston K. (2011) From conservation to crowdsourcing: A typology of citizen science. In:
 System Sciences (HICSS), 2011 44th Hawaii international conference on pp. 1-10. IEEE.
- Zoellick B., Nelson S. J. & Schauffler M. (2012) Participatory science and education: bringing both views into
 focus. *Frontiers in Ecology and the Environment* 10, 310-3.