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26 Abstract

27 1. Rapid expansion in the collection of large acoustic datasets to answer ecological questions

28 has generated a parallel requirement for techniques that streamline analysis of these datasets. 

29 In many cases, automated signal recognition algorithms, often termed ‘call recognisers’, are 

30 the only feasible option for doing this. To date, most research has focused on what types of 

31 recognisers perform best, and how to train these recognisers to optimise performance. 

32 2. We demonstrate that once recogniser construction is complete and the data processed, further

33 improvements are possible using intrinsic and contextual information associated with each 

34 detection. We initially construct a call recogniser for the Night Parrot (Pezoporus occidentalis) 

35 using the R package monitoR, and scan a test dataset. We then examine a number of intrinsic 

36 variables associated with each detection generated by the recogniser, and several contextual 

37 variables, associated with the species’ environment and ecology to determine if they might help 

38 predict whether a given detection is a true positive (target signal) or false positive (non-target 

39 signal). We test several logistic regression models incorporating different combinations of 

40 intrinsic and contextual variables, selecting the best-performing model for application. We train 

41 the model, using it to calculate the probability each detection is a true or false positive. 

42 3. Substituting this model-derived probability for raw recogniser score improved the

43 recogniser’s performance, reducing the number of detections requiring proofing by 60% to 

44 achieve recall of 90%, and by 76% to achieve recall of 75%. 

45 4. This technique is applicable to any recogniser output, regardless of the underlying algorithm.

46 Application requires an understanding of how the recogniser algorithm determines matches, 

47 and knowledge of a species’ ecology and environment. Because advanced programming skills 

48 and expertise are not required to apply this technique, it will be particularly relevant to field 

49 ecologists for whom building and operating call recognisers is an element of their research 

50 toolbox, but not necessarily a focus.
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53

54 Introduction

55 The increasing availability of technology to collect and analyse acoustic data, particularly 

56 affordable automated recording units (ARUs), has seen a rapid expansion in this field of 

57 research and its applications for ecology and conservation (Shonfield & Bayne, 2017; Teixeira, 

58 Maron, & van Rensburg, 2019). The popularity of ARUs is largely due to their efficiency. 

59 Particularly for long-term deployments, it is much cheaper to purchase, deploy, and maintain 

60 an ARU than a human observer (Digby, Towsey, Bell, & Teal, 2013; Williams, O'Donnell, & 

61 Armstrong, 2018). Unlike human observers, ARUs can be left in the field unattended for 

62 extended periods, limited only by the availability of power and memory. As solar panels and 

63 large capacity memory cards are now also relatively cheap, maintaining permanent acoustic 

64 recording stations at remote sites has become feasible.

65

66 The easy collection of copious data has advantages and disadvantages. Large acoustic datasets 

67 may contain powerful data (Magurran et al., 2010), but extracting that data can be challenging. 

68 There are several techniques available to efficiently analyse large acoustic datasets, the most 

69 suitable contingent on the nature of the signal of interest (Joshi, Mulder, & Rowe, 2017; 

70 Towsey et al., 2018). Increasingly, research has focused on techniques that automate the signal 

71 extraction process. This is typically performed using a signal detection algorithm, hereafter 

72 termed ‘call recogniser’ (Potamitis, Ntalampiras, Jahn, & Riede, 2014; Priyadarshani, 

73 Marsland, & Castro, 2018). For infrequent signals within large datasets, a call recogniser may 

74 be the only feasible solution. 

75
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76 There are several options for researchers wanting to construct a call recogniser. They vary in 

77 complexity, from commercial off-the-shelf programs such as Kaleidoscope (Wildlife Acoustics 

78 Inc., Concord, Massachusetts, USA), to more recently, advanced machine learning algorithms 

79 (Koops, van Balen, & Wiering, 2014; Salamon & Bello, 2017), acoustic indices (Towsey, 

80 Wimmer, Williamson, & Roe, 2014), and wavelet based approaches (Priyadarshani, Marsland, 

81 Juodakis, Castro, & Listanti, 2020). Although the computational processes behind each differ, 

82 the basic premise remains the same; a computer is trained to detect and evaluate acoustic 

83 signals by comparing them to a known target signal. Potential signals are classified depending 

84 on their similarity to the target signal, with the user controlling the threshold at which a match 

85 is declared. 

86

87 Understanding the impact of this threshold is critical to understanding the performance of a 

88 call recogniser. Setting a high threshold increases the precision of the recogniser, meaning a 

89 higher proportion of matches will represent actual detections, or true positives. However, this 

90 increases the likelihood of false negatives; target signals that do not meet the threshold, for 

91 example soft or distant calls. This reduces the recogniser’s recall, or ability to identify all target 

92 signals within a dataset. Conversely, reducing the threshold ensures that more lower-scoring 

93 target signals are returned as matches, but simultaneously returns more lower-scoring non-

94 target signals, or false positives. This increases the recogniser’s recall, but also increases the 

95 proportion of non-target signals in the resulting dataset, thereby decreasing precision. This false 

96 positive / false negative trade-off is a well-known classification problem, with threshold choice 

97 driven by the relative cost of false positive or false negative errors. 

98

99 Besides an obvious focus on which computational techniques create the most successful 

100 recognisers, research has also focused on the properties of training data that achieve the best 
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101 results (Knight & Bayne, 2018; Priyadarshani et al., 2018). Because a call recogniser’s output 

102 is dependent on how closely the signal of interest compares to the training data, efforts to 

103 improve a specific type of recogniser’s performance have largely focused on this aspect of their 

104 development. However, little research has focused on how post-processing could be used to 

105 derive improvements in overall performance. Typically, the output of a recogniser is a list of 

106 potential ‘detections’, each with associated intrinsic information derived from the call 

107 recognition process, for example a ‘score’ reflecting how similar the detection is to the training 

108 data. There is also any number of contextual variables associated with each detection, such as 

109 time-of-day and geographic location, that are known to affect detectability (Horton, Stepanian, 

110 Wainwright, & Tegeler, 2015). Patterns in both intrinsic and contextual data could provide 

111 clues to predict whether a detection is actually a signal of interest.

112

113 In this paper we outline a novel method to develop a model that uses both intrinsic and 

114 contextual information associated with a call recogniser’s raw output to generate an improved 

115 output. We intentionally present a detailed description of the process, because one of our aims 

116 is to demystify the process of automated call recognition for field ecologists, thereby 

117 encouraging them to perform their own analyses. Broadly, our process was to first construct a 

118 call recogniser for the Night Parrot (Pezoporus occidentalis), then investigate relationships 

119 between the intrinsic and contextual variables associated with the recogniser’s output to 

120 establish if any could be incorporated into a model that predicts whether a detection is a true 

121 positive or false positive. Following a model development and selection process, we selected 

122 the best-performing model and tested whether this model improved recogniser performance.

123

124 Methods and Results

125 Study species and data collection
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126 The Night Parrot is a cryptic and extremely rare bird that formerly occurred throughout arid 

127 central Australia (Higgins, 1999), but is now known from only a handful of sites. The species 

128 is relatively sedentary, and predictably vocal (Leseberg et al., 2019; Murphy, Silcock, Murphy, 

129 Reid, & Austin, 2017). They spend the day roosting in low, dense vegetation, as pairs or small 

130 groups. The birds emerge at dusk to engage in a brief period of calling before leaving their 

131 roost sites to feed. Birds occasionally return to their roost sites and call during the night, but 

132 typically return for another brief period of calling just before dawn. Night Parrot vocalisations 

133 are now relatively well known (Leseberg et al., 2019). Given this predictable calling behaviour, 

134 acoustic monitoring has proven the most efficient technique for both monitoring the species at 

135 known locations, and detecting it at new locations. 

136

137 Since 2016, Night Parrot calling activity at three long-term stable roost sites in western 

138 Queensland has been monitored using Song Meter 3 and Song Meter 4 ARUs (Wildlife 

139 Acoustics Inc., Concord, Massachusetts, USA), fitted with standard external omnidirectional 

140 microphones. ARUs recorded from sunset to sunrise, using the ARU’s default gain settings. 

141 Most ARUs recorded at sampling rates of 24000 Hz, or 48000 Hz, although some recorded at 

142 16000 Hz. As required under the Nyquist-Shannon Sampling Theorem (Landau, 1967), these 

143 sampling rates are greater than twice the peak frequency of all Night Parrot calls of interest to 

144 this study. 

145

146 Call recogniser development and sound file analysis

147 We used the R package monitoR (Katz, Hafner, & Donovan, 2016; R Core Team, 2018) to 

148 build a call recogniser for the Night Parrot. R is a programming language accessible to users 

149 without specialist programming skills, and in a comparison with recognisers using machine 

150 learning methods and commercially available packages, monitoR performed well (Knight et 
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151 al., 2017). We used the technique outlined in Katz et al. (2016) to construct a series of binary 

152 point templates. Templates are created by clipping an example call from a sound file and 

153 creating a spectrogram (FFT transformation = Hann window, FFT size = 512, overlap = 0). A 

154 selection of cells of the resulting spectrogram are then classified as ‘on’ or ‘off’. ‘On’ cells are 

155 selected to represent the expected region of strongest signal for the call, while ‘off’ cells are 

156 placed strategically where no or little signal is expected (Fig. 1). 

157

158 Figure 1.  An example of a binary point matching template for the Night Parrot ‘toot’ call, 

159 overlaid on the spectrogram of a ‘toot’ call. The central box with dotted outline represents the 

160 ‘on’ cells, and ideally contains most of the expected call energy. The shaded area represents 

161 the ‘off’ cells.

162

163 Although Night Parrots have a variety of different calls, we focused on the bell-like and whistle 

164 calls, as these are the calls most likely to be heard in and around roost sites (Leseberg et al., 
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165 2019). These broad call types can be broken down further, and we constructed at least one 

166 template for each of the ten specific call types known from the study area. We used example 

167 calls extracted from the long-term monitoring dataset, adding further templates until testing 

168 suggested the recogniser could detect most local variation within these call types. The final 

169 recogniser used 31 different templates. Because monitoR requires template files and the sound 

170 files that will be scanned to have the same sample rate, these were downsampled or upsampled 

171 if required to a sampling rate of 24000 Hz. Qualitative testing confirmed that manipulating the 

172 files in this way had no apparent effect on results. 

173

174 Before analysis, each sound file is converted to a spectrogram using the same parameters as 

175 were used to create the templates. Each template is then stepped along that spectrogram, and 

176 for every step a similarity score is assigned based on the difference between the amplitude 

177 detected in the ‘on’ cells, and the amplitude detected in the ‘off’ cells of the template. When 

178 plotted against time this results in a series of peaks; the recogniser returns a list of these peaks 

179 with their associated score. As some signals within the sound file are detected by more than 

180 one template, a buffer of two seconds was applied so only the highest scoring peak within any 

181 two-second period was returned. Because Night Parrot calls are generally short, temporally 

182 discrete events, the risk of missing calls due to applying this buffer was low. 

183

184 Recogniser performance assessment

185 To evaluate recogniser performance, 90 ten-minute field recordings known to contain Night 

186 Parrot calls were extracted from the long-term monitoring dataset. We used field recordings to 

187 ensure measured performance reflected what could be achieved on actual field recordings 

188 rather than a manufactured test dataset (Potamitis et al., 2014). We used recordings from nights 

189 that were either calm or with light winds, as wind noise significantly reduces both ARU and 
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190 recogniser performance. While this imposes a limitation on the future data the results of this 

191 research can be applied to, based on the species’ ecology and our experience at the study site, 

192 this limitation is not onerous, and is one we are willing to accept to improve efficiency. To 

193 avoid overfitting, none of the field recordings contained calls that were used to train the 

194 recogniser. The dataset was balanced across the three long-term stable roost sites, and three 

195 discrete periods of the night: dusk, night, and dawn. Recordings for the dusk period occurred 

196 within one hour of sunset, recordings for the dawn period occurred within one hour of sunrise, 

197 and recordings for the night period included any time in between the defined dusk and dawn 

198 periods. Using audio-editing public domain software Audacity (version 2.3.0, 

199 http://audacity.sourceforge.net/), each clip was viewed in a spectrogram (spectrogram settings: 

200 y-axis = 0-4000 Hz, x-axis = 30 secs, FFT transformation = Hann window, FFT size = 256),

201 and listened to at a consistent volume using a set of high-quality noise-cancelling headphones 

202 (Sennheiser PXC480). 1850 definite Night Parrot calls were detected, ranging from loud calls 

203 made in close proximity to the recorder, to faint, distant calls, that could not be seen on a 

204 spectrogram and were only detectable by manual listening. 

205

206 Each 10-minute recording was then analysed using the call recogniser, with the threshold score 

207 set to zero, so all peaks in the similarity score were returned as ‘detections’. It is important to 

208 note that a ‘detection’ in this sense is a return from the recogniser representing a prospective 

209 detection; it may or may not be an actual detection. The recogniser returned 31437 detections 

210 from the 900-minute dataset. These detections were compared to the manually extracted data, 

211 and each classified as either a true positive (an actual Night Parrot call) or false positive (not a 

212 Night Parrot call). The recogniser did not detect 110 of the 1850 calls in the dataset. These 

213 were added to the dataset and classified as false negatives. We assessed baseline performance 

214 by producing a precision-recall curve, and calculating the area under the curve (AUC) (Fig. 2). 
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215 A precision-recall curve plots recall for each value of precision as the classification threshold 

216 is reduced, allowing assessment of the trade-off between the two parameters. AUC of the 

217 precision-recall curve is the recommended univariate statistic for comparing call recognisers 

218 (Knight et al., 2017).

219

220

221

222

223

224

225

226

227

228 Figure 2.  Precision-recall curves calculated using raw recogniser scores, including separate 

229 curves for each period (left) and site (right). The figures in brackets give the area under the 

230 curve (AUC) for each curve. A higher AUC indicates better recogniser performance.

231

232 Identification of potential intrinsic and contextual variables

233 We next considered what intrinsic and contextual information could be used to assess the 

234 likelihood that any given detection was a true positive detection. From the raw recogniser 

235 output we extracted the following intrinsic variables for each detection: the score associated 

236 with that detection (score); which template resulted in the detection (template); and, the parent 

237 call type of that template (call_class). Score is the recogniser’s most easily interpreted raw 

238 output, with obvious predictive value. 

239
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240 A comparison of success rates for different values of call_class suggested these could have 

241 predictive value. The Night Parrot calls incorporated into this recogniser are generally either 

242 short or long. Short single notes are common components of other bird and insect calls 

243 occurring in the study area, increasing the probability that templates for short calls will generate 

244 false positives. Conversely, longer Night Parrot calls are relatively unique in the study area, 

245 meaning their templates are less likely to generate false positives (Table 1).  

246

247 Table 1.  Success rates for different categories of call templates, with recogniser threshold set 

248 to zero. Three letter codes represent the different Night Parrot call types incorporated into the 

249 recogniser. Short call templates, particularly the ‘1di’ template, generate most false positives. 

250 Most of the long call templates perform well.

Short Calls Long Calls
ddt too 1di 2di 3nt 1tr 2tr 2wh 4wh how

TRUE POS. 50 287 647 25 5 33 13 567 6 107
FALSE POS. 388 4140 22053 2128 156 46 54 521 138 73

251

252

253 For each detection we clipped a 1.1 second segment of the original file that captured the precise 

254 time of that detection, then used R package ‘seewave’ (Sueur, Aubin, & Simonis, 2008) to 

255 calculate the difference between the maximum amplitude and mean amplitude within the 

256 frequency range of the template that triggered the detection. Binary point matching compares 

257 sound energy within a series of designated ‘on’ and ‘off’ cells for each template. Loud sounds 

258 within the same frequency range as the binary point template can result in high sound energy 

259 flooding both the ‘on’ and ‘off’ cells, and if slightly more energy is detected in the ‘on’ cells 

260 this will trigger a detection. Typically though, it will receive a relatively low score. We 

261 reasoned that if there was a large difference between the maximum and mean amplitude within 

262 the template’s frequency range, and the detection received only a moderate score, this was 
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263 likely to represent an example of excess sound energy flooding the template, and therefore a 

264 false positive. If a large difference in the maximum and mean amplitude within the template’s 

265 frequency range resulted in a high score, the sound energy probably closely matched the ‘on’ 

266 cells of the template, and was more likely to represent a true positive. A plot of amplitude 

267 difference (amp_diff) against score confirmed this relationship (Fig. 3).

268

269

270

271

272

273

274

275

276

277

278

279

280 Figure 3.  Plot of the relationship between amplitude difference and score for each detection, 

281 categorised by detection classification (true positive or false positive). As predicted, detections 

282 with a higher amplitude difference but moderate to low score are mostly false positives.

283

284 We next considered potential contextual variables. All detections were classified according to 

285 which period (‘dusk’, ‘night’ and ‘dawn’), and which site they were recorded from (‘site_1’, 

286 ‘site_2’, ‘site_3’). Precision-recall curves were plotted and AUC calculated for each period 

287 and site, then compared to the recogniser’s baseline precision-recall curve, to explore their 
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288 influence on recogniser performance (Fig. 2). Recogniser performance varied between periods, 

289 performing best during the night, and most poorly at dusk. This is expected, given the 

290 likelihood of false positives is reduced during the night when diurnal birds are not calling. 

291 There was no apparent effect of site on recogniser performance. For each detection we also 

292 noted which model of ARU (ARU_type) and which specific ARU (machine) recorded the 

293 detection, and in which of the 90 test files (file) the detection occurred.

294

295 Model development procedure

296 Our aim was to determine whether a model-derived probability calculated using intrinsic and 

297 contextual variables could be substituted for the recogniser’s initial score value, and achieve 

298 better results. We chose a generalised linear mixed-effects model structure, to enable inclusion 

299 of both fixed and random effects. As our response variable was binary (true positive or false 

300 positive), models were fitted assuming a binomial response distribution, and a logit link 

301 function (logistic regression) using the lme4 package (Bates & Sarkar, 2007).

302

303  As the practical purpose of this model is to facilitate the process of sifting through recogniser 

304 outputs, the process of model building can be more informal than for research purposes that 

305 involve a priori questions. The approach to selecting the final model was to initially generate 

306 a comprehensive set of possible fixed and random effects and compare candidate models 

307 containing main effects and interactions for the fixed effect terms, together with the random 

308 effects. We then assessed the performance of the candidate models via summary statistics and 

309 selected the most promising ones for further development. We determined which variables and 

310 variable combinations were critical to those models’ performance. Finally, we re-evaluated the 

311 refined models before selecting the best performing model as the final model. Model selection 

312 was completed using the entire performance dataset.
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313

314 Fixed and random effects selection

315 As the aim was to apply the model developed using the performance dataset to any data 

316 collected at the study site, we limited fixed effects to those whose complete range of variation 

317 was represented in the performance dataset, and which could be determined a priori from the 

318 resulting raw recogniser output. Factors whose variation was not entirely represented in the 

319 performance dataset were included as random effects, and not used in predictions. For example, 

320 as ARU_type for any data collected at the study site will be either SM3 or SM4, and both were 

321 adequately represented in the performance dataset, this could be included as a fixed effect. 

322 However, more than 80 individual ARUs have been used at the study site, and only a portion 

323 of these were represented in the performance dataset. As this portion represents a random 

324 sample from the set of possible ARUs, machine (representing the specific ARU used) is 

325 included as a random effect. This still allowed the variance associated with this factor to be 

326 captured and an allowance made for it in the training phase, but only that level of variance 

327 determined during the training phase can be used when the model is applied to future data 

328 collected from any machine.

329

330 Data exploration revealed interactions were needed between score and both period and 

331 amp_diff, so these were initially included as a three-way interaction fixed effect. Because the 

332 relationship between a detection’s score and the probability that the detection is a true positive 

333 is curved in the logistic scale, score was fitted as a quadratic term. Also included as fixed 

334 effects were call_class and ARU_type. As factors whose level will very likely be new for future 

335 datasets, site, file, and machine were all included as random effects. The factor template can be 

336 established a priori from the raw results, but as it contains 31 levels and is nested within 
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337 call_class its predictive power is likely to be limited. However, understanding its impact on 

338 model performance may still be important, so it was included as a random effect.

339

340 We initially tested a series of 16 models. Each model included all fixed effects, but varied in 

341 the combination of random effects. All possible combinations of the four random effects were 

342 tested, including a model with no random effects. Models were compared using both Akaike’s 

343 Information Criterion (AIC) and Bayesian Information Criterion (BIC). AIC and BIC are 

344 statistics for comparing relative model performance, with the primary difference being that 

345 BIC penalises more heavily for model complexity (Burnham & Anderson, 2004). Four models 

346 stood out as having much lower AIC than the other 12 (Table 2). These four models also had 

347 a much lower BIC than the other 12 models. Examining the variance components for each 

348 random effect revealed that file and template were the source of most variation in each of the 

349 four best-ranked models, with the contribution of both machine and site limited (Table 3). 

350 Therefore, we retained file and template as random effects.

351

352 We next ran the model including all fixed effects and our chosen random effects, before 

353 examining the significance of resulting individual fixed effect coefficients (Table 4). These 

354 suggest that the three-way interaction between period, score and amp_diff is not substantially 

355 influencing model performance, but that each of the two way interactions between these 

356 variables should be retained. Call_class has an effect on model performance, but not 

357 consistently across classes. Calls that are short have less influence on the model than calls 

358 which are long. To investigate this, we created two new variables based on call length. The 

359 variable call_length_1 categorised detections based on the template that detects the call as 

360 either short or long, while call_length_2 categorised all detections based on the template that 
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361 detects the call as either short, medium, or long. The influence of ARU_type is significant, but 

362 marginally so.

363

364 Table 2.  Summary statistics for all random effects models, ranked by AIC. There is strong 

365 support for the top four models, warranting further inspection of each component’s variation 

366 within these models.

Random effects AIC BIC Deviance log lik. Resid. df
file + template + site 2520.79 2779.82 2174.11 -1229.40 31406
machine + file + template 2520.96 2779.98 2174.03 -1229.48 31406
machine + file + template + site 2522.75 2790.14 2174.13 -1229.38 31405
file + template 2528.47 2779.14 2172.61 -1234.23 31407
file + site 2716.34 2967.01 2436.64 -1328.17 31407
machine + file 2716.37 2967.04 2436.45 -1328.18 31407
machine + file + site 2718.31 2977.34 2436.58 -1328.16 31406
file 2722.61 2964.93 2434.75 -1332.31 31408
machine + template 2730.59 2981.26 2561.90 -1335.30 31407
machine + template + site 2732.03 2991.06 2561.98 -1335.01 31406
template + site 2740.30 2990.97 2581.41 -1340.15 31407
template 2840.21 3082.53 2699.26 -1391.10 31408
machine 2955.80 3198.11 2873.55 -1448.90 31408
machine + site 2957.47 3208.15 2873.65 -1448.74 31407
site 2965.63 3207.95 2892.61 -1453.82 31408
fixed effects only 3066.66 3300.62 3010.66 -1505.33 31409

367

368 We tested a series of nine models, including all possible combinations of the following fixed 

369 effects: score, period and amp_diff as either a three-way, or three separate two-way 

370 interactions; template category as either call_class, call_length_1 or call_length_2; and, with 

371 or without ARU_type. The random effects for file and template were retained for all models. 

372 The three best models had an AIC value no larger than one unit above the model with the 

373 minimum AIC (Table 5). However, the third ranked of these models had a much lower BIC 

374 than the other two, with ΔBIC > 30 between this model and the next ranked model by BIC. 
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375 Given there was not clear support for one of these three models using AIC, we contend that the 

376 best-ranked model using BIC could be considered preferable. We selected this model for use 

377 in practice.   

378

379 Table 3.  Variance of each random effects component within each of the top four models used 

380 for random effects testing. The contribution of both machine and site are limited in each case, 

381 supporting the decision to retain only file and template for model simplicity.

file + template + site machine + file + template
Component Std dev. Component Std dev.
file 1.2177 file 1.2113
template 1.2545 template 1.2492
site 0.6554 machine 0.5789

machine + file + template + site file + template
Component Std dev. Component Std dev.
file 1.2127 file 1.3584
template 1.2538 template 1.2222
machine 0.2847
site 0.5536

382

383 Model testing

384 To test the model, we partitioned the performance dataset, using one third of the files, balanced 

385 by site and period, to train the model. The remaining files were set aside to test the model. After 

386 training, the model was used to predict whether each detection in the test dataset was a true 

387 positive. Because we would not know file in advance for a future dataset, this random effect 

388 was predicted using the estimate from model training. The predicted probability for each 

389 detection was then then substituted for raw recogniser score, and the precision-recall curves 

390 replotted (Fig. 4).

391
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392 Table 4.  Significance of the fixed effect coefficients for the model incorporating all fixed 

393 effects. Of particular note are the consistent differences between short calls (‘ddt’, ‘1di’, ‘2di’, 

394 ‘3nt’, ‘too’) and long calls (‘1tr’, ‘2tr’, ‘2wh’, ‘4wh’, ‘how’).

Fixed effect Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.271 0.702 -10.356 0.000
period ‘dusk’ 1.623 0.543 2.986 0.003
period ‘night’ 0.970 0.588 1.650 0.099
score2(1) 133.608 56.883 2.349 0.019
score2(2) -494.164 59.590 -8.293 0.000
amp_diff 0.801 0.086 9.258 0.000
ARU_type ‘SM4’ -1.367 0.416 -3.288 0.001
call_class ‘1tr’ 5.001 1.469 3.404 0.001
call_class ‘2di’ 0.054 0.787 0.068 0.945
call_class ‘2tr’ 5.767 1.868 3.088 0.002
call_class ‘2wh’ 3.352 0.763 4.391 0.000
call_class ‘3nt’ 1.972 1.198 1.645 0.100
call_class ‘4wh’ 3.824 1.449 2.638 0.008
call_class ‘ddt’ 2.254 1.348 1.673 0.094
call_class ‘how’ 5.211 1.323 3.938 0.000
call_class ‘too’ 1.597 0.984 1.623 0.105
period ‘dusk’: score2(1) 173.151 71.366 2.426 0.015
period ‘night’: score2(1) -63.386 107.565 -0.589 0.556
period ‘dusk’: score2(2) 198.939 73.734 2.698 0.007
period ‘night’: score2(2) -214.750 102.485 -2.095 0.036
period ‘dusk’:amp_diff -0.588 0.094 -6.288 0.000
period ‘night’:amp_diff -0.428 0.106 -4.024 0.000
score2(1):amp_diff -7.443 5.904 -1.261 0.207
score2(2):amp_diff 34.896 5.888 5.926 0.000
period ‘dusk’: score2(1):amp_diff 9.761 7.708 1.266 0.205
period ‘night’: score2(1):amp_diff 27.259 12.111 2.251 0.024
period ‘dusk’: score2(2):amp_diff -8.322 8.106 -1.027 0.305
period ‘night’: score2(2):amp_diff 5.248 11.050 0.475 0.635

395

396

397

398
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399 Table 5.  Summary statistics for the final set of nine models. Only fixed effects for each model 

400 are shown; the random effects for each model were file and template. There is strong support 

401 for each of the top three models by AIC, but the third of these (in bold) has much stronger 

402 support by BIC and was selected as the final model.

Fixed effects AIC BIC Deviance log lik. Resid. df

period * score2 * amp_diff + 
call_length_1 + ARU_type 2522.12 2705.94 2171.67 -1239.06 31415

period * score2 * amp_diff + 
call_length_2 + ARU_type 2522.60 2714.78 2169.74 -1238.30 31414

period * score2 + score2 * 
amp_diff + period * amp_diff 
+ call_length_1 + ARU_type

2522.84 2673.25 2180.75 -1243.42 31419

period * score2 + score2 * 
amp_diff + period * amp_diff + 
call_length_2 + ARU_type

2524.54 2683.30 2179.03 -1243.27 31418

period * score2 * amp_diff + 
call_class + ARU_type 2528.47 2779.14 2172.61 -1234.23 31407

period * score2 + score2 * 
amp_diff + period * amp_diff + 
call_class + ARU_type

2529.69 2746.94 2182.30 -1238.84 31411

period * score2 + score2 * 
amp_diff + period * amp_diff + 
call_length_1

2532.23 2674.28 2179.28 -1249.12 31420

period * score2 + score2 * 
amp_diff + period * amp_diff + 
call_length_2

2533.67 2684.07 2177.83 -1248.83 31419

period * score2 + score2 * 
amp_diff + period * amp_diff + 
call_class

2538.85 2747.74 2181.04 -1244.42 31412

403

404

405

406
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407

408

409

410

411

412

413

414

415 Figure 4.  Precision recall curves calculated for each period using raw recogniser scores (left), 

416 and model-derived probabilities (right). When using model-derived probabilities, the increase 

417 in AUC is evident overall, and across all periods, meaning this approach improves recogniser 

418 performance. 

419

420 The precision-recall curves for the combined data, and for each period, demonstrate that 

421 substituting model-derived probability for raw score results in an increased AUC overall (AUC 

422 = 0.89 for model-derived probability, and AUC = 0.76 for raw score), meaning overall 

423 recogniser performance is improved. As expected, this improvement is modest for the night 

424 period, but marked for both the dusk and dawn period, with AUC improving by 0.10 and 0.15 

425 respectively.

426

427 To quantify the practical improvements resulting from this modelling procedure, we 

428 investigated the number of detections requiring proofing to achieve a specific level of recall. 

429 Recall is of particular importance because the recall of a recogniser equals the probability that 

430 a species will be detected if it is available for detection, an important component of the overall 

431 probability of detection (Pollock et al., 2004). Furthermore, it is important for rare species 
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432 research because prioritising recall maximises the likelihood of detecting the species if it is 

433 available in the acoustic dataset. This emphasis on recall manifests itself in the increased 

434 number of detections that require proofing to achieve the increased level of recall. 

435

436 We calculated the mean number of false positive detections requiring proofing per 10-minute 

437 file in the test dataset to achieve a specific recall; a proxy for the amount of time an analyst 

438 needs to spend proofing recogniser output. We initially calculated the score cut-off that 

439 achieved a specified recall for both raw score, and for the model-derived probability. Because 

440 model-derived probability incorporates period as a fixed effect in the calculation, cut-off scores 

441 for a specific value of recall under the model-derived probability may vary between periods. 

442 Accordingly, the model-derived probability cut-off for each recall threshold was calculated 

443 separately for each period using only the test dataset to avoid overfitting. Using these data, we 

444 also simulated for both raw score and model-derived probability, how many false positive 

445 detections would need to be checked during a complete 12 hour night of acoustic data, with 

446 one hour of ‘dusk’, ten hours of ‘night’ and one hour of ‘dawn’ recordings to be assessed.

447

448 The model-derived probability markedly reduced the number of false positives that needed 

449 checking to achieve each level of recall tested (Table 6). This improvement is most pronounced 

450 during the night period, and at lower levels of recall. However, even at 90% recall, if using the 

451 model-derived probability as a substitute for score, the number of false positives that would 

452 need checking during an entire night of acoustic data is 40% of what would need to be checked 

453 if using the raw score.

454

455
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456 Table 6.  The mean number of false positives requiring proofing in a 10-minute recording for 

457 a set level of recall, using either raw recogniser score (Score), or the model-derived probability 

458 (MDP). The final three columns present the number of false positives that would need proofing 

459 if analysing a 12-hour night of recordings, with the ‘%’ column representing the percentage of 

460 proofing, and therefore time required when using model-derived probability compared to raw 

461 score.

462

463

464 Discussion

465 The method we have outlined demonstrates that intrinsic and contextual information associated 

466 with a call recogniser’s output can be used to improve the performance of that recogniser. This 

467 approach is compatible with any signal detection algorithm, not just binary point matching as 

468 is the case here. While the improvements are revealed through the AUC of the precision-recall 

469 curve, this representation is somewhat abstract. The practical benefits of this approach are more 

470 clearly demonstrated in the reduced effort required to achieve a specific recall. For practitioners 

471 using call recognisers to analyse large quantities of field recordings, the limiting factor is 

472 typically time, which manifests itself as the number of detections that can be manually proofed. 

473 However, while this technique does result in efficiencies, there are limitations.
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474

475 Raw recogniser performance and improvement

476 These improvements will only apply to detections within the recogniser’s output; it does not 

477 change the recogniser's ability to detect false negatives. False negatives occur for two reasons. 

478 The recogniser may detect some other signal that occurs concurrently with the call of interest 

479 and achieves a higher score, meaning the call of interest is missed. Such events are difficult to 

480 overcome. Alternatively, a call of interest may not match the training data. Post-processing 

481 techniques, as outlined here, will not improve recogniser performance in that respect. This can 

482 only be overcome by updating the recogniser’s training dataset to improve the probability the 

483 recogniser will detect that missed call. If new templates are added to the recogniser, the model 

484 selection process will need to be rerun, with sufficient training and test files added to model 

485 the impact of the new templates.

486

487 Model application for different species and new sites

488 Even though calls used to create this recogniser’s templates were excluded from the training 

489 and test datasets, because the Night Parrot population at the study site is very small, it is likely 

490 calls from the same individuals were incorporated into the training and test datasets. There is a 

491 resultant risk of model overfitting. Additionally, the repertoire of this population is well-known 

492 (Leseberg et al., 2019), and the recogniser templates featured most of the variation that occurs 

493 at the study site. It is possible this combination of factors has exaggerated the success of our 

494 model. In scenarios where the subject species does not have such a consistent repertoire, 

495 because it has a larger number of individuals, a more dynamic population, or greater variation 

496 in its calls, this technique will still be applicable provided this variation is incorporated into the 

497 training and test datasets.

498
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499 The properties of the general soundscape, including likely non-target calls that occur in the 

500 dataset will also influence model applicability. For example, the model developed here could 

501 be reasonably applied to other datasets from western Queensland, where Night Parrots are 

502 known to have similar calls to those in this dataset (NL pers. obs.), and where the suite of likely 

503 non-target species will also be similar. However, the model may not be as effective if applied 

504 to a dataset from Western Australia, where the suite of Night Parrot and likely non-target 

505 species are slightly different to western Queensland. Testing on an annotated dataset would 

506 determine if the model does improve recogniser performance and by how much. Otherwise, 

507 the model selection and training process would need to be rerun using a performance dataset 

508 compiled from the new region of interest. 

509

510 Impact of model treatment of different call types

511 The fixed effect call_length_1 boosts the model-derived probability for longer calls, when 

512 compared to shorter calls. In a scenario where shorter calls predominate at a site, this may affect 

513 the recogniser's ability to detect birds at that site. It is likely that faint short calls are most 

514 affected. Because an ARU established at a prospective long-term stable roost site will record a 

515 variety of short calls over time, the probability of at least some calls being detected by the 

516 recogniser is high. Additionally, over long periods at long-term stable roost sites, there is 

517 typically a mix of long and short calls (SM, NL unpub. data), ensuring the recogniser will detect 

518 birds if they are present. This may still be an issue if a short deployment limits the variety of 

519 calls that occur within the dataset.

520

521 An additional consequence of the differing treatment of call types by the model will be the 

522 distortion of potential distance effects. Researchers can extract distance information from 

523 acoustic data, using signal strength, or variables closely related to signal strength such as the 
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524 call recogniser’s raw score, as a proxy for distance from the recorder (Knight & Bayne, 2018; 

525 Lambert & McDonald, 2014). This information is then used in distance-sampling procedures, 

526 or for establishing survey effort parameters (Yip, Leston, Bayne, Solymos, & Grover, 2017). 

527 The mechanics of this modelling technique will confound any attempts to use the model-

528 derived probabilities as a proxy for distance, because they are influenced by factors other than 

529 signal strength, whereas raw score is typically heavily dependent on signal strength (Knight & 

530 Bayne, 2018). For example, if ranked by model-derived probability, a faint long call is likely 

531 to rank higher than if it were ranked by raw score alone. If model-derived probability is being 

532 used as a proxy for distance from the recorder, this would be equivalent to the call being made 

533 closer to the recorder, an incorrect assumption that could distort conclusions around that call’s 

534 likely distance from the recorder. 

535

536 Depending on the aim of the distance-sampling approach, this issue could be overcome in 

537 several ways, although each has limitations. Research could assess the relationship between 

538 model outputs and distance, although this is likely to vary across call types, and for a species 

539 like the Night Parrot would require a test dataset that would be almost impossible to collect. 

540 Alternatively, signal strength or raw score for a given detection could be extracted after model 

541 application to determine distance data, although this will mean the calls extracted will be 

542 influenced by the model. Again, long calls are more likely to be extracted than short calls, 

543 possibly interfering with subsequent conclusions. A final option could be to first sort data by 

544 raw score, before applying the model to the subset of data whose raw score satisfies the distance 

545 sampling criteria. 

546

547 Other parameters with potential predictive power
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548 The modelling approach applied here was successful using a relatively limited number of 

549 parameters, some that were particular to the subject species’ biology, such as call_length_1 

550 and period, while others were generic, such as amp_diff, ARU_type and the random effects 

551 template and file. It is likely that a number of other parameters could be incorporated to further 

552 improve results. As Night Parrots call more frequently in response to local rain events (Murphy, 

553 Austin, et al., 2017), a variable quantifying antecedent rainfall could be an obvious inclusion. 

554 An emerging question in Night Parrot research is the merit of acoustic surveys at water points 

555 and likely feeding sites, compared to current protocols that focus solely on roosting habitat. If 

556 autecological research determines a consistent pattern of nocturnal activity, site resource (i.e. 

557 water point, feeding site, roosting site) could be included as a fixed effect in the model.

558

559 The predictable calling behaviour and site fidelity of the Night Parrot make it particularly suited 

560 to the approach we have outlined here, but with careful consideration, it will be applicable in 

561 other scenarios. Intrinsic variables related to raw recogniser output can be developed that are 

562 species specific, as call type was here, or recogniser specific, as amp_diff was in this case, 

563 being relevant specifically to the binary point matching technique used in this recogniser. There 

564 are likely to be similar variables that could be developed for the numerous other recogniser 

565 algorithms. Improvements to the raw output for more advanced algorithms may not be as 

566 significant as for the relatively basic binary point matching, but for field ecologists, any 

567 reduction in the time required to proof recogniser returns will be beneficial. The contextual 

568 variables that could be trialled will relate to a species’ biology and might include long-term 

569 seasonal and short-term weather effects, habitat or other environmental parameters at both the 

570 local and landscape scale, and calling biology. The number of contextual parameters that could 

571 be tested is limited only by a researcher’s ability to compile a performance testing dataset that 

572 satisfactorily represents the variation in each parameter. 
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573

574 This technique’s biggest advantages are its simplicity, and compatibility with any recognition 

575 algorithm. For the ecologist or practitioner, call recogniser development is daunting, with high 

576 performing recognisers generally built using state-of-the-art techniques that in many cases 

577 require advanced programming skills and research time. The foundation of the post-processing 

578 technique we outline in this paper is a relatively straightforward procedure that can be 

579 completed using graduate level statistics. For that reason, it will be of particular use to 

580 practicing field ecologists looking to improve a simple recogniser, which may only be one part 

581 of a broader research project. It may also be applied to any state-of-the-art recognition 

582 algorithm to further improve results.
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598 We intend to make the outputs of the recogniser, and the code used to create and apply our 

599 model available via Github. 
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