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Conservation of species under climate change relies on accurate predictions of species 
ranges under current and future climate conditions. To date, modelling studies have 
focused primarily on how changes in long-term averaged climate conditions are likely 
to influence species distributions with much less attention paid to the potential effect 
of extreme events such as droughts and heatwaves which are expected to increase 
in frequency over coming decades. In this study we explore the benefits of tailoring 
predictor variables to the specific physiological constraints of species, or groups of 
species. We show how utilizing spatial predictors of extreme temperature and water 
availability (heat-waves and droughts), derived from high-temporal resolution, long-
term weather records, provides categorically different predictions about the future 
(2070) distribution of suitable environments for 188 mammal species across different 
biomes (from arid zones to tropical environments) covering the whole of continental 
Australia. Models based on long-term averages-only and extreme conditions-only 
showed similarly high predictive performance tested by hold-out cross-validation on 
current data, and yet some predicted dramatically different future geographic ranges for 
the same species under 2070 climate scenarios. Our results highlight the importance of 
accounting for extreme conditions/events by identifying areas in the landscape where 
species may cope with average conditions, but cannot persist under extreme conditions 
known or predicted to occur there. Our approach provides an important step toward 
identifying the location of climate change refuges and danger zones that goes beyond 
the current standard of extrapolating long-term climate averages.

Introduction

There is strong evidence that climate change is already influencing natural systems 
(Parmesan 2006), and an increasing number of species are projected to be at risk of 
extinction unless effective mitigation and conservation actions can be implemented 
(Thomas et al. 2004). Accurate predictions of species responses to projected changes in 
climate could greatly enhance the effectiveness of conservation actions (Guisan et al. 
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2013). This need, along with advances in species distribution 
modelling techniques (SDMs), has led to a proliferation of 
studies examining changes in species distributions linked to 
recent climate change (Chen et al. 2011, VanDerWal et al. 
2012), as well as predictions of future distributions of taxa 
across broad geographic scales (Peterson et al. 2002, Thuiller 
et al. 2005).

To date, modelling studies have focused primarily on 
how changes in mean temperatures and rainfall are likely to 
influence species distributions (Porfirio et al. 2014), with less 
attention paid to the effect of extreme events such as droughts, 
cyclons and heatwaves, on species persistence. The frequency 
and severity of extreme weather events such as heatwaves are 
predicted to increase (IPCC 2014). These extreme conditions 
can play an important role in regulating population dynam-
ics and thus constrain species distributions (Harrison 2000, 
Frederiksen et al. 2008, Wernberg et al. 2013), either directly, 
via thermal stress, or indirectly, by influencing food or habitat 
availability or disturbance processes such as fire (Andersen 
et  al. 2012, Bateman et  al. 2012, Cadenhead et  al. 2016). 
For example, population declines, range contractions and 
local extinctions of birds and mammals have been reported 
or predicted in relation to thermal stresses caused by very hot 
temperatures coupled with drought conditions (Welbergen 
et al. 2008, McKechnie and Wolf 2010, Krockenberger et al. 
2012). In contrast, extreme heavy rainfall events that drive 
lush vegetation growth are associated with booms of rodent 
populations in arid and semi-arid zones of Australia and 
America (Parmesan et al. 2000, Holmgren et al. 2006, Letnic 
and Dickman 2006, Greenville et al. 2012).

Mechanistic and process-based niche models represent 
valuable tools that can be used to predict population trends 
and geographic distributions of species in relation to these 
direct and indirect impacts of climatic conditions by explicitly 
accounting for demographic processes and/or physiological 
tolerances of the target species, as well as daily or yearly varia-
tion in weather (Anderson et al. 2009, Kearney and Porter 
2009, Briscoe et  al. 2016). However process-based models 
are typically data-hungry, and for most species in most eco-
systems in most areas of the world there exists insufficient 
data, knowledge, expertise and computational resources to fit 
mechanistic models to a large enough portion of the biota 
such that they could be widely used for comprehensive con-
servation planning or ecological impact assessment of climate 
change (Kearney et al. 2010, Dormann et al. 2012, Peterson 
et  al. 2016). Despite their many shortcomings (Dormann 
2007, Jackson et al. 2009, Jarnevich et al. 2015), correlative 
species distribution models will, for the foreseeable future, 
remain the most widely used tools to forecast the effects of 
climate change on biodiversity (Thomas et al. 2004, Thuiller 
2007, Franklin 2010, Dormann et al. 2012).

Correlative SDMs relate species’ occurrence data to spa-
tial variation in environmental conditions (Franklin 2010). 
These can be used as a good approximation to process-based 
models to forecast species distributions under climate change, 
if the environmental predictors selected for fitting the models 
are known to directly influence population persistence of the 

target species (Kearney et  al. 2010). While the use of eco-
logically and biologically meaningful variables in correlative 
SDMs is widely advocated in the SDM literature (Guisan 
and Zimmermann 2000, Araújo and Guisan 2006, Elith and 
Leathwick 2009, Jarnevich et  al. 2015), most of the stud-
ies forecasting future distribution ranges still rely primarily 
on the use of long-term average climatic variables (e.g. bio-
clim variables; Milanovich et al. 2010, Franklin et al. 2013). 
Recently, biogeographic studies have started to implement 
predictors accounting for variability and stochasticity of 
weather for making inferences about current species distribu-
tion ranges/patterns (Zimmermann et al. 2009, Reside et al. 
2010, Bateman et  al. 2012, Seabrook et  al. 2014, Briscoe 
et  al. 2016). Studies that have explored the influence of 
extreme weather conditions on future species distributions 
(Porfirio et al. 2014, Briscoe et al. 2016) have focused on few 
species or a small geographic extent, limiting generalization 
to other species or environments.

Australian mammals present an interesting case study of a 
group of species that tend to be physiologically constrained 
by environmental extremes (Kearney et al. 2010, Briscoe et al. 
2016). Periodic weather extremes have been identified as con-
straining the ranges of some Australian mammals (Bateman 
et al. 2012, Briscoe et al. 2016). Extreme heat can be particu-
larly challenging for large terrestrial endotherms that must 
minimise heat gained from their environment, while also los-
ing heat produced by their own metabolism (Bartholomew 
1966). Across Australia high temperatures are often accom-
panied by low water availability or high humidity, which 
can further exacerbate this problem by restricting the use 
of evaporative cooling – the primary method of heat loss in 
most mammal species (Adolph 1947, Maloney and Dawson 
1998). Because Australia’s mammal fauna exists across a wide 
range of biogeographical regions (from arid zones to tropical 
environments), there is likely to be some benefit in studying 
the group as a whole and seeking generalizations about which 
types of extremes constrain their range. Here we provide the 
first comprehensive account of how weather extremes con-
strain the ranges of this diverse group of mammals using a 
unique spatial dataset compiled for the purpose. We explore 
the degree to which SDM predictions concur under current 
and future climate and provide recommendations for mod-
ellers seeking robust predictions about species future ranges 
under changing environmental conditions.

Material and methods

Mammals occurrence data

We accessed presence–only records for all terrestrial mammals 
from the Atlas of Living Australia (ALA; < http://spatial.ala.
org.au/ >). Due to incomplete coverage of all Australian 
states, we also sought data from individual states agencies 
(see acknowledgments). We filtered and reduced this data set 
(569 292 records) by: 1) removing gross positional errors on 
a basis of contemporary knowledge on current and historical 
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species distribution ranges (Van Dyck and Strahan 2008, 
Churchill 2009, Menkhorst and Knight 2010); 2) retain-
ing only spatially-valid records collected from 1980 to 2013 
with maximum point location error of less than 1 km and 
3) removing duplicated records: we kept only one observa-
tion per species per grid cell (1 km resolution). We modelled 
only those species with at least 30 records (n  197 species) 
in order to minimize the possible negative influence of small 
samples sizes (Hernandez et al. 2006, Wisz et al. 2008). See 
Supplementary material Appendix 1 for full list of species 
and information on data availability for each of them.

Model predictors

Interpolated daily and monthly climate data at 0.05° spatial 
resolution (∼ 5 km) were obtained from the Australian Water 
Availability Project for the period 1977–2012 (Raupach 
et  al. 2009, 2012). Temperature data were corrected with 
an adiabatic lapse rate of 0.00645°C m–1 (Moore 1956, 
Sturman and Tapper 1996) from the original 0.05° values 
to a resolution of 0.01° (∼ 1 km) based on a digital elevation 
model (DEM) resampled from its original 0.0025° to 0.01° 
resolution (GEODATA 9-second DEM ver.3, Geoscience 
Australia). The spatial resolution of the weather data there-
fore matched the (approximate) worst case on the spatial 
point accuracy of the mammals’ occurrence data. We used 
the monthly climate data to create a set of long-term aver-
aged climatic variables representing mean annual trends (e.g. 
annual rainfall) and seasonality (e.g. annual range in tempera-
ture) using the R package ‘climates’ ver. 0.1.1-3 (VanDerWal 
et  al. 2011). These climate predictors are widely used in 
species distribution models studies conducted at regional to 
global scales (Franklin 2010).

From the daily weather data we calculated seven weather 
variables accounting for extreme conditions that are likely 
to influence mammal distributions. These included indices 
describing the magnitude of temperature extremes (5th and 
95th percentile temperatures for minimum and maximum 

daily temperatures, respectively), maximum length of 
dry spells (maximum run of sequential dry days; rain 
fall  1 mm), and rainfall intensity (mean rainfall on days 
where rainfall  1 mm). The effects of hot temperatures on 
mammals are likely to be dependent on water availability 
and humidity, which influence the use and effectiveness of 
evaporative cooling (Adolph 1947, Maloney and Dawson 
1998, Krockenberger et al. 2012). Therefore, we also calcu-
lated mean vapour pressure during hot weather, the maxi-
mum length of heatwaves, as well as the sum of temperatures 
during the longest run of sequential dry days (rainfall  1 
mm) (Table 1). All weather and climatic predictors were 
mapped at 1km grid cell resolution. Models were only based 
on a subset of the above mentioned variables with maximum 
Pearson’s pairwise correlation of 0.7 (Tabachnick and Fidell 
1996, Dormann et  al. 2013) (see Table 1 for a description  
of the retained variables and Supplementary material Appen-
dix 2 for a full list of the variables considered for the analyses 
and correlation matrices). These correlations were calculated 
across all mammals’ occurrence records of the filtered data set 
(background points), and assessed for each of the predictor 
sets individually and jointly.

Some remote areas in central and western Australia had 
sparse rainfall data (Supplementary material Appendix 3) and 
therefore, interpolation of data in these areas might be insuf-
ficient to meaningfully define rainfall patterns in these areas, 
affecting the calculation of many of the climatic and weather 
extremes variables explained above. We ran preliminary 
analyses to identify the boundaries of these sparsely-gauged 
parts of the continent and to assess the effects of their 
inclusion into modelling outputs. Areas with sparse station 
data were masked out of further analysis in order to mini-
mize the effect of these interpolation errors in our subsequent 
analyses (Supplementary material Appendix 3).

In addition to weather variables, a remotely sensed average 
vegetation height variable was included in all predictors sets 
(AVG, EXT and COMP) to capture some of the variation 
relating to underlying habitat type and site productivity 

Table 1. Environmental predictors retained for modelling. A check mark denotes the predictors included in each of the predictors sets used 
to fit the species distribution models: the long-term mean climatic variables only (AVG model; five predictors); the extreme weather vari-
ables only (EXT model; five predictors) and all extreme weather variables plus the long-term averaged annual precipitation (COMP; six 
predictors).

Variable name Description Resolution AVG EXT COMP

Climate: averages
Bio1 Annual mean temperature 0.05° 
Bio3 Isothermality: mean diurnal range /annual temperature range 0.05° 
Bio4 Temperature seasonality (standard deviation) 0.05° 
Bio12 Total annual precipitation 0.05°  

Weather: extremes
T5 5th percentile of minimum temperature (across all years) 0.05°  
av.vpr.hot Average vapour pressure on days when maximum temperature 

exceeds T90 (maximum temperature  90th percentile)
0.05°  

av.sum.temp Sum of maximum temperatures during maximum run of dry days 
(rainfall  1mm), (average across years)

0.05°  

av.m0v.hot Maximum run of hot, dry days (maximum temp  T90, rainfall 
 1mm) (average across years)

0.05°  

Vegetation structure
veg.hgt Forest canopy height (Simard, M. et al. 2011) 1 km   
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(Simard et al. 2011) (Table 1). We chose not to include coarse 
categorical variables relating to vegetation composition (land 
cover classes -e.g. National Vegetation Information System of 
Australia; ESCAVI 2003) due to constraints on the number 
of observation data points for several species and concerns 
about over-fitting with categorical variables using numerous 
degrees of freedom. Note that the vegetation height variable 
is assumed constant in future predictions due to the lack of 
information about future distribution of vegetation type and 
structure, growth, and disturbance.

Modelling framework

We modelled the distribution of mammal species using 
MaxEnt (ver. 3.3.3k; Phillips et al. 2006, Phillips and Dudík 
2008), a machine learning method designed for dealing with 
presence–only data (Elith et al. 2006, 2011) while taking into 
account the distribution of environmental predictors in the 
background area of analysis. For each species we fitted three 
sets of Maxent models using the average vegetation height 
predictor plus: 1) the long-term mean climatic variables only 
(AVG model); 2) the extreme weather variables only (EXT 
model) and 3) all extreme weather variables plus the long-
term averaged annual precipitation (COMP) (see Table 1 for 
the detailed list of predictors included in each of these pre-
dictors sets). This allowed us to test for differences in model 
predictive performance and spatial predictions of habitat 
suitability based on long-term mean climatic variables versus 
extreme weather variables, as well as the effect of using both 
predictor types in the same model (although, because all tem-
perature related variables were strongly correlated, the only 
long-term mean climatic variable that could be included in 
the COMP model was annual precipitation).

Exploratory analyses showed that species records were 
biased towards areas of high accessibility (e.g. roads and urban 
areas). Biased survey data can lead to environmentally and 
geographic biased predictions that might reflect the sampling 
effort rather than the species’ true distributions across the 
study area (Phillips et al. 2009, Kramer-Schadt et al. 2013, 
Syfert et al. 2013, Lahoz-Monfort et al. 2014). In order to 
reduce the possible effect of geographical bias in presence data 
on SDM predictive performance, we provided background 
points to MaxEnt in such a way as to copy the geographic and 
environmental bias of the occurrence records (sensu Phillips 
et  al. 2009; Syfert et  al. 2013) by using as background all 
available records for mammals (76 980 records after remov-
ing duplicate records per grid cell). This approach, known as 
the ‘target-group background’ approach (Phillips et al. 2009), 
has been shown to perform well in dealing with spatial sam-
pling bias (Syfert et al. 2013, Fithian et al. 2015). The same 
background points were used in all three sets of models.

In addition to controlling the selection of background 
points, we also controlled the complexity of the response 
shapes by allowing only linear, quadratic and product fea-
tures in the models. These are similar to linear, quadratic and 

interaction terms in regression models. Models with these 
restricted feature types will be smoother than those fitted with 
MaxEnt’s default settings, less prone to fitting idiosyncrasies 
of the data, and potentially better at predicting to new times 
and places (Merow et al. 2014). Default values were used for 
all other MaxEnt settings except that adding sample points to 
the background was not required as that was already achieved 
by our use of the ‘target background’ approach. Predictive 
performance was assessed in terms of discrimination ability 
measured using the area under the receiver–operator char-
acteristic curve (AUC; Hanley and McNeil 1982) adapted 
for use with presence–background samples (Phillips et  al. 
2006). This metric is suited to presence–background data, 
since calibration cannot be assessed and applying thresholds 
to predictions loses information (Guillera-Arroita et al. 2015, 
Morán-Ordóñez et al. 2016). We calculated AUC using the 
ten-fold cross-validation provided in Maxent. Final reported 
models were also run using 100% of the data available for 
each species. We refer to the later as ‘alldata’ models and they 
were only used to compare future predictions based on the 
different data sets (AVG, EXT and COMP).

Integration of model results across all species

We used boxplots to analyse the differences in predictive per-
formance (cross-validated AUC) of the three sets of models 
across all species (n  197). To examine spatial differences in 
predictions, we calculated the differences in the relative envi-
ronmental suitability values predicted across the landscape 
between the three model data sets: ‘alldataEXT – alldataAVG’, 
‘alldataCOMP – alldataEXT’ and ‘alldataCOMP – alldataAVG’. For 
these analyses, we omitted species for which models per-
formed poorly based on at least one of the three model data 
sets (cross-validated AUC  0.7; Swets 1988) as these can 
not reliably characterise the current distribution of the spe-
cies (n  188). These comparisons were based on the models 
fitted with all of the available observation data (i.e. not the 
cross-validation subsets). This allowed us to identify the areas 
across the continent where one predictor set predicted higher 
or lower relative environmental suitability for a given species 
in comparison with the other model data sets. The difference 
maps for each species were aggregated across species; provid-
ing the mode of the differences across the 188 species for each 
pair of predictor variable data types (e.g. EXT vs AVG) at 
each grid cell. This addresses the question of whether the rela-
tive suitability of the cell is predicted to decrease or increase at 
each grid cell for most of the species when fitting the models 
using EXT predictors compared with AVG predictors. The 
output of these joint analyses is a binary map showing the 
areas where the use of one predictor set (e.g. EXT) increases 
or reduces relative environmental suitability predictions 
compared with other predictor variable types (e.g. AVG). To 
explore which variables could be driving the differences in 
predictions between the two model sets we analysed the dis-
tribution of the values of the original predictors in those areas 
(Table 1).
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Future scenarios

To illustrate how the use of different climate variables (EXT, 
AVG) could influence forecasts of species’ responses to 
climate change, we also predicted mammal distributions for 
the year 2070. Acknowledging the potential importance of 
GCM variability in analysing the impacts of climate change 
on biodiversity (Diniz-Filho et al. 2009, Synes and Osborne 
2011, Harris et al. 2014) we compared forecasts of species’ 
responses under two general circulation models (GCM), the 
ACCESS 1.3 (CSIRO: Bi et  al. 2013) and the CanESM2 
(Canadian earth system model; Chylek et al. 2011) and the 
emissions scenario RCP8.5 (Riahi et al. 2011). We modelled 
future climates under RCP 8.5, a high emissions business as 
usual scenario, because observed emission trends appear to be 
tracking these projections (Peters et al. 2013).

Relative to other possible futures, the ACCESS 1.3 
scenario modelled here represents a relatively hot and dry 
climate future for Australia, with CanESM2 predicting more 
variable changes in rainfall across the continent. Downscaled 
projected monthly changes in temperature, humidity, and 
rainfall for 2070 were obtained as the differences from the 
base period (1990–2009) using SimClim (1 km resolution; 
Yin et  al. 2013) and assuming greenhouse gas concentra-
tions for RCP8.5 and a moderate response to increased CO2 
concentrations (Riahi et al. 2011). We then used the offset 
(or change factor) method to construct future daily weather 
data by combining the change signal from these GCM out-
puts with observed weather datasets (CSIRO and Bureau of 
Meteorology 2015), an approach previously used in impact 
assessments (Cullen et  al. 2009, Bell et  al. 2012). At each 
site we splined predicted monthly changes in temperature 
and humidity to predict daily changes over an annual cycle, 
with these then added to daily weather data for 1990–2009. 
To generate rainfall predictions, we applied the monthly pre-
dicted changes in total precipitation to observed monthly 
rainfall values (1990–2009), with the constraint that 
monthly rainfall could not fall below 0. We then multiplied 
rainfall from all of the days with rainfall greater than 0 by 
a set proportion, such that the new monthly total rainfall 
matched predictions. Changes in the temporal pattern of 
‘rainy days’ were therefore driven by changes in rainfall that 
resulted in days that were previously classified as ‘rainy days’ 
being classified as ‘dry days’ (i.e. if rainfall fells below 1 mm) 
and vice versa. While climate change may also alter rainfall 
patterns, for example by increasing the frequency of heavy 
rainfall events followed by longer dry spells, spatial and 
temporal predictions of how changes in variance are likely 
to influence patterns of daily weather and extremes across 
all of Australia were not available at the time of our study. 
Future climate average and extreme weather variables were 
then calculated from these derived daily future weather data.

Long-term averaged and short-term extreme weather 
variables were used to generate predictions of mammal dis-
tributions for 2070 using the three sets of MaxEnt models 
fitted under the current climate (AVG model, EXT model 
and COMP). We compared the spatial predictions of AVG, 

EXT and COMP model projections for the current and 2070 
climates and measured the correlations between their spatial 
outputs, and the extent of predicted temporal change in suit-
able ranges (calculated as the sum of cell values of the logistic 
MaxEnt output across Australia). We used the limiting factors 
tool of MaxEnt (Elith et al. 2010) to explore which variables 
limit the predicted geographic distribution of mammals the 
most both currently and under the 2070 climatic/weather sce-
narios. This tool identifies the variable X that could increase 
environmental suitability the most at a given grid cell when  
its actual value is changed by its mean value across the  
training data. We also used the MESS map tool of MaxEnt 
(Multivariate Environmental Similarity Surface; Elith et  al. 
2010) to assess the proportion of novel environmental space in 
each model prediction, under both current and future scenarios 
(i.e. the level of environmental extrapolation). We calculated 
the percentage of grid cells across Australia with values out-
side the environmental ranges captured by the target-group 
background data used to fit the models. All statistical analyses 
were performed in R (R Core Team).

We also explored whether the differences in spatial 
predictions of AVG, EXT and COMP model projections for 
current and 2070 climates were related to species traits. We 
collated available trait data for the mammal species modelled 
(body mass, activity cycle and geographic breath) and plotted 
the relationship between these traits and the aspects of model 
prediction evaluated here (correlations between spatial output 
predictions and differences in predicted ranges). In addition, 
we assessed whether differences in range projections varied 
between species occupying different primary climatic zone/s.

Results

There was a relatively high correlation between predictions, 
and high congruence in predictive discrimination between 
modelling approaches based on average, extreme and com-
posite climate variables. However, the relatively high corre-
lation between predictions broke down when predicting to 
future climates due to the divergence in spatial patterns of 
average and extreme climate predictors.

Current distributions

The predictive discrimination of models tested using cross-
validation did not differ markedly between the three sets 
of climatic/weather scenarios (AVG, EXT and COMP), 
with moderate to high predictive performance across most 
species (AUC  0.7; Fig. 1). Only 9 out of 197 mammal spe-
cies showed poor predictive performance across at least one 
scenario (AUC  0.7; Supplementary material Appendix 1). 
These nine species had low predictive performance across all 
three variable sets, and were not considered for subsequent 
analyses.

For many species predictions of environmental suitability 
differed spatially between models that utilized different 
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predictor variables. Models fit using averaged short-term 
extreme weather predictors (EXT) predicted higher environ-
mental suitability compared to models fit using long-term 
averaged climatic predictors (AVG) for most species across 
Tasmania, the southeast and southwest parts of continen-
tal Australia, as well as some small areas in the northeast 
coast of Australia (Fig. 2a, b). Areas where higher environ-
mental suitability was predicted by the extremes models for 
the largest number of species (areas with darker colours in  
Fig. 2a), are characterized by either their low average annual 
mean temperature ( 10°C; Fig. 2c), very low –  5th 
percentile – minimum temperatures ( –5°C; Fig. 2g), high 
rainfall ( 2000 mm; Fig. 2f), high vegetation height ( 40 m; 
Fig. 2k) and/or for being areas where the contrast between the 
diurnal temperature range differs markedly from the annual 
temperature (isothermality values  0.4; Fig. 2d). The areas 
where lower environmental suitability was predicted for 
the largest number of species when using extreme weather 

predictors instead of long-term average climatic predictors 
(areas with lighter colours in Fig. 2a and grey areas in Fig. 2b) 
were characterized by one or more of the following condi-
tions: high average annual mean temperatures ( 25°C; Fig. 
2c); high 5th percentile minimum temperatures ( 10°C, 
tropical and subtropical regions; Fig. 2g); areas where there 
is either very high humidity or very low humidity during 
hot weather (tropical and arid zones, respectively; Fig. 2h);  
areas that experience very high temperatures over long 
dry spells (areas in the central and northwest of Australia;  
Fig. 2i, j); and areas with low seasonality (Fig. 2e) where the 
diurnal temperature range does not differ much from the 
annual temperature range (mainly the tropical regions of  
the north of Australia; Fig. 2d).

Models fit on short-term extreme weather conditions plus 
annual rainfall (COMP) showed very similar spatial patterns 
to models fit on extreme weather conditions only (EXT). 
Therefore, the comparison between COMP and AVG mod-
els yields near identical results to the comparison between 
EXT and AVG models (Supplementary material Appendix 4,  
Fig. A4.1). However, COMP models predicted a decrease 
in environmental suitability compared to EXT models for 
most species in areas with high annual rainfall (mainly the 
western coast of Tasmania and the northeast coastal areas 
of continental Australia) and an increase in environmen-
tal suitability in the northwest of Australia (Supplementary 
material Appendix 4, Fig. 4.2).

Current vs future distribution predictions

We found that the relationship between averages and extreme 
weather variable models were very similar under both GCM 
scenarios (Supplementary material Appendix 5). Thus, for 
simplicity, and because we are interested in exploring the vari-
ation in predictions due to the variables set selection rather 
than the variation associated to different GCM scenarios, we 
focus here on the results from simulations using one scenario 
only (ACCESS 1.3).

In general, Pearson’s correlations between environmen-
tal suitability maps of AVG, EXT and COMP models were 
lower under the 2070 hot and dry climate scenario than 
under current climate/weather, suggesting a divergence in 
predictions of environmental suitability under future cli-
mate change (Fig. 3a, 4). These results were consistent even 
when assessed only within the extent of the biogeographi-
cal regions where the species is known to occur currently 
(Supplementary material Appendix 6). For most of the 
species the decrease in correlations between current and 
2070 climate scenarios was less than |0.2| across all pre-
dictor sets (Fig 3b). However, for 13 of the 188 species 
modelled, Pearson’s correlations between environmental 
suitability maps dropped from r  0.6 (highly correlated) 
to r  0.36 (weakly correlated) under the 2070 climate 
scenario when comparing EXT vs AVG models, and for 
19 species when comparing COMP vs AVG models  
(Fig. 3a, b).

Figure 1. Notched boxplots for AUC values (area under the curve 
statistic) for all cross-validated mammals’ models (n  197 species), 
detailed for climate/weather predictor-set: AVG (models using 
long-term averaged climatic conditions), EXT (averaged short-term 
extreme weather conditions) and COMP (averaged short-term 
extreme weather conditions plus long-term average annual rainfall). 
In each boxplot, the boxes delimit interquartile ranges (25th and 
75th percentiles), the whiskers delimit ∼2 standard deviations. The 
notches are centred around the AUC median values (horizontal 
bolded line) and the outliers are represented as open circles. The 
lack of overlap between the notch – narrowing around the median 
– of two boxes offers evidence of a statistically significant difference 
between the medians. Note that the Y-axis is truncated to the range 
of observed AUC values (0.6–1).
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Figure 2. (a) Spatial variation in the number of species for which models fit using short-term extreme weather conditions (EXT) predicted 
higher habitat suitability than models fit using long-term averaged climatic conditions (AVG); (b) Difference between spatial predictions of 
EXT and AVG models. Areas of the continent where EXT models predict higher environmental suitability than AVG models for most of the 
species are shown in orange, with regions where EXT models predict lower environmental suitability than AVG models for most species shown 
in grey; (c–k) Density plots for the predictors used to fit EXT and/or AVG models (see Table 1 for a full description of these predictors). These 
plots (c–k) show the range of values of each predictor in each one of the two zones defined in Fig. 2b, and the frequency at which those values 
occur across the landscape: the orange curve shows the distribution of the predictors’ values in the areas where EXT models predict higher 
environmental suitability compared to AVG models for most of the species; the grey curve shows the distribution of predictors’ values in the 
areas where EXT models predict lower environmental suitability compared to AVG models for most of the species. Arrows point to areas of the 
environmental space where the values of predictors contribute to explain the differences in spatial predictions of EXT and AVG models.
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Across the 13 species that showed large declines in cor-
relations between current future scenarios, future divergences 
were most commonly due to the fact that the EXT and 
COMP models predicted large changes in distribution rela-
tive to the AVG model predictions (Supplementary material 
Appendix 7). For example, environmental suitability predic-
tions for the paucident planigale Planigale gilesi were simi-
lar between AVG, EXT and COMP models under current 
climate (all models identified the central parts of the conti-
nent as the most suitable for this species) (Fig. 4). In contrast, 
whereas the AVG model predicted that areas predicted to be 
suitable for the planigale under the current climate would 
remain suitable under the 2070 climatic scenario, EXT and 
COMP models predicted dramatic shifts in the distribu-
tion range of the species in slightly different directions (from 
central Australia towards the south and southeast coast;  
Fig. 4). For this species, the shifts in the suitable conditions 
predicted by EXT and COMP models seem to be driven by 
the increase in the length of heatwaves (av.m0v.hot) predicted 
under the 2070 scenario (Fig. 4). In some other cases, the 
change in predictions’ correlations over future scenarios arises 
because one of the predictor-set models predicted limited or 
zero environmental suitability for a species under 2070 sce-
nario whereas other models predicted the maintenance of the 
suitable environmental range over time or even an increase 
in environmental suitability (see further examples in Supple-
mentary material Appendix 7).

In general terms, under the ‘current’ climate scenario the 
extent of suitability predicted by EXT and COMP models 
tended to be smaller than those predicted by AVG models, 
although this difference was not evident when we included 
only biogeographical regions where the species is known to 
occur currently (Fig. 5, Supplementary material Appendix 

6, Fig. A6 d, f ). Under the ‘current’ climate COMP models 
predicted slightly more restricted suitable distribution ranges 
than EXT models (Fig 5). Under the future climate scenario, 
differences in the extent of predicted suitable range showed a 
high variability across species and predictors sets.

The amount of extrapolation to novel environments (as 
measured by MESS maps) was larger in EXT and COMP 
models than in AVG models under both current and – 
especially – future climate scenarios. Under the current 
climate, novel climatic conditions were found in 0.08, 0.11 
and 0.12% of the total study area for AVG, EXT and COMP 
predictions, respectively. These percentages increased to 20.6, 
57.8 and 59.9%, respectively under the future climatic sce-
nario. The areas of non-analogue climate under the future 
scenario are located mainly in the central and northern parts 
of the continent (Supplementary material Appendix 8).

We found no clear evidence for an effect of species traits 
on the magnitude of divergence of predictions between 
AVG, EXT and COMP models (Supplementary material 
Appendix 9). The reduction in suitable range predicted by 
EXT models compared to AVG model under future climate 
scenario was marginally larger for species that occupy – 
totally or partially – desert areas or areas of hot and dry sum-
mers and mild winters (Supplementary material Appendix 9,  
Fig. 9.1) than for species characteristic of other climate 
zones.

Discussion

Conservation of species under climate change relies on accu-
rate predictions of both the extent and suitability of species 
ranges under current and future climate conditions. We 

Figure 3. (a) Pearson’s correlations between the environmental suitability maps of models fit on the three predictor-sets (AVG, EXT and 
COMP), under current climatic/weather conditions (current scenario – x-axis) and under a hot and dry climate future scenario for 2070 
(2070 scenario – y-axis); points aligned to the dashed black line indicate species for which the correlation between environmental suitabil-
ity maps was constant over current and 2070 climatic scenarios; (b) Range of changes in Pearson’s correlations of environmental suitability 
maps between 2070 and current climates (x-axis) for each pair of predictor sets (EXT vs AVG, COMP vs AVG and COMP vs EXT). The 
y-axis indicates the frequency (number of species) at which those changes in correlation were observed across the data (n  188 mammal 
species). Composite (COMP) and extreme-only model predictions for 2070 are, on average, more highly correlated than composite and 
long-term-average predictions, reflecting that extremes variables are contributing more to composite models than the long-term-average 
variables.
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showed that species distribution models based on long-term 
averaged means and extreme conditions generally have simi-
larly good predictive performance, and yet predicted geo-
graphic ranges for the same species often differ (both in extent 
and spatial distribution). Differences in the spatial predic-
tions of these models increase under future climate scenarios  
(Fig. 4, Supplementary material Appendix 7). These dif-
ferences are likely to have significant implications for con-
servation, such as leading to different spatial priorities for 
conservation actions, and in extreme instances, influencing 
extinction risk status assessment under IUCN red list or 
other prioritization approaches. Our results highlight the 
importance of accounting for extreme conditions/events 
alongside traditionally used long-term averaged climatic 

predictor when modelling species distributions on the basis 
of their climatic niche. Failure to consider the potential role 
of extreme conditions when modelling species distributions 
could lead to unreliable predictions of species responses to 
change in climate.

Across species, EXT and COMP models tended to pre-
dict more restrictive suitable ranges than AVG models sug-
gesting that extreme weather conditions might limit species 
distributions in areas theoretically suitable in terms of long-
term mean climatic conditions. In other words, models 
based on long-term averages might be over predicting the 
amount of environmental suitable area for a species, at least 
in some areas (Zimmermann et al. 2009, Reside et al. 2010, 
Bateman et al. 2012, 2016, Briscoe et al. 2016). Divergences 

Figure 4. Environmental suitability maps for the paucident planigale Planigale gilesi as predicted by each climate predictor set (AVG, EXT 
and COMP). Predictive performance values (cross-validated AUC value, mean  SD) are indicated for the current predictions of each 
model. The figure shows the contrast between the predictions of each predictor-set under current and future (2070) climatic scenarios (maps 
on first and second columns, respectively). The limiting factors maps (third column) show the variable that it is limiting the most an increase 
in environmental suitability at each grill cell and across the study area under the 2070 scenario and for each climate predictor-set individu-
ally (AVG, EXT and COMP). Refer to Table 1 for meaning of the variables’ abbreviations.
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between model predictions showed strong patterns in geo-
graphic and environmental space (Supplementary material 
Appendix 7), providing general insight into key processes 
that may be missed by failing to consider a broad suite of 
climate variables. Based on annual mean temperature values 
(AVG models) many species that occur in temperate areas 
along the east coast of Australia were predicted to also find 
suitable environmental conditions in the arid central parts of 
the continent and/or in the subtropical or tropical northern 
areas under the current climate scenario. Although these areas 
may not differ substantially in mean climate, they are likely 
to present quite different challenges to mammal species. For 
example, mammals that rely heavily on evaporative cooling 
may struggle to regulate their body temperature when faced 
with high temperatures coupled with high humidity – condi-
tions that frequently occur in subtropical and tropical areas 
(Adolph 1947, West 2003, Briscoe et  al. 2016). Similarly, 
the arid zones of central and northern Australia are challeng-
ing for species that do not have physiological or behavioural 
adaptations (e.g. heterothermy, use of burrows, nocturnality) 
to cope with long heatwaves or extended dry spells captured 
in the EXT model thorough the variables av.sum.temp and 
av.m0v.hot (Fuller et  al. 2014). While we found no strong 
patterns between the divergence of predictions between 
different models and a number key species’ traits, we did 

find that range predictions in the future tended to diverge 
more for species that occupied environments characterised 
by these conditions (e.g. desert and areas with hot summers/
mild winters).

Models based on extreme conditions only (EXT) pre-
dicted higher suitability for species than AVG models in areas 
of very high annual rainfall (mainly areas corresponding to 
the distribution of rainforest in Australia) and areas charac-
terized by low minimum (temperatures below 5th percentile) 
and average annual mean temperatures. This might be due to 
the fact the variables included in the EXT model focused on 
capturing extreme conditions that are likely to prove physi-
ologically challenging for mammals. These variables may fail 
to capture processes responsible of the distribution of vegeta-
tion communities and their productivity over space and time 
(which in turn determine patterns of species distributions 
and richness), such as the cumulative effect of rainfall over 
time in combination with annual mean temperatures (Hus-
ton and Wolverton 2009). These factors were better captured 
in the AVG model (annual mean temperature is known to 
be a good proxy for net primary productivity; Gaston 2000, 
Huston and Wolverton 2009) and therefore in their absence, 
EXT models might have overestimated the suitability of some 
areas for many species. For example, mountain areas in the 
southeastern Great Dividing Range will have similar values 
of T5 (extreme minimum temperatures) than neighbouring 
temperate or semi-arid inland areas, yet their annual mean 
temperature and total rainfall – and therefore the vegetation 
communities and species they support – differ substantially 
(e.g. dense forest in the Great Dividing Range vs open dry 
woodlands). Ideally, both extreme conditions and long-term 
averages should be considered together as potential predictors 
for species distribution models (e.g. COMP models in this 
study), since each individual extreme and average climatic 
variable might help to capture different aspects of the ecology 
and distribution of the species over different spatial scales. 
This is supported by the fact that in our study, COMP mod-
els tended to perform slightly better than either EXT or AVG 
models (although we note that they did also have one extra 
predictor variable, which may have had a minor influence on 
results). However, there are potential drawbacks of integrat-
ing all these variables in the same model: many of the extreme 
weather conditions are strongly correlated to long-term aver-
ages under the current conditions (Supplementary material 
Appendix 2), and the inclusion of correlated variables might 
hamper the capacity of using these models for inference 
(James et al. 2013). Model averaging or ensemble modelling 
approaches may prove useful as a way of capturing multiple 
processes in inference and prediction (Wintle et  al. 2003, 
Thuiller et al. 2009) while avoiding parameter instability dur-
ing model fitting.

Correlations between extreme variables and average con-
ditions are expected to change over space and time: recent 
studies have demonstrated that extremes of temperature and 
precipitation are changing at a faster rate than annual trends 
(Alexander et al. 2007). This might help explain why spatial 
predictions – and therefore correlations – between different 

Figure 5. Differences in the predicted environmental suitability 
range between the three predictor-sets (AVG, EXT and COMP) for 
current climate scenarios (current scenario – x-axis) for a hot and 
dry climate 2070 future scenario (2070 scenario – y-axis). Environ-
mental suitability range was calculated as the sum of grid values of 
the logistic MaxEnt output across Australia. When comparing EXT 
vs AVG, positive values in any of the axis indicate that the total 
range predicted by EXT models is larger than the range predicted by 
the AVG models, and negative values indicate the opposite. Simi-
larly, for the COMP vs AVG and the COMP vs EXT comparisons. 
The intersection between the two dashed black lines represents a 
species for which there was no difference in predicted suitable range 
between models under either current or 2070 (future) scenarios.
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models diverged more under the future climatic scenario 
tested here than under the current climate. Divergence in EXT, 
COMP and AVG future model predictions is also associated 
with the fact that more than 50% of the extreme conditions 
predicted for 2070 showed non-analogue conditions under 
current climate (i.e. there is a large uncertainty of predictions 
in more than 50% of Australia). The extrapolation of predic-
tions to non-analogue environmental conditions in MaxEnt 
is controlled by a feature called ‘clamping’: it constrains pre-
dictions to remain within the range of values of the training 
data (in the case of this study, the target-group background 
data set used to characterize the range of available environ-
mental conditions under current climate) (Elith et al. 2011). 
Therefore, the prediction of environmental suitability in areas 
of non-analogue climate is constant. In our simulations, non-
analogue conditions for EXT models were largely driven by 
longer runs of hot days (av.m0v.hot) than observed under the 
current climate. In many instances, the relative environmen-
tal suitability for species’ was close to zero at the maximum 
values of av.m0v.hot under the current climate, supporting 
the use of the ‘clamping’ feature. These predictions do not 
explicitly take into account the physiological thresholds of 
the species (which in most cases is unknown as it requires 
detailed studies/lab experiments not available for most of the 
species; Krockenberger et  al. 2012) nor the resilience and 
plasticity of the species to adapt to changes in environmental 
conditions (Elith and Leathwick 2009, Catullo et al. 2015). 
For example, model predictions for the species Rhinonicteris 
aurantia, the orange leaf-nose bat using EXT and COMP 
predictors sets showed that there would not be any climatic 
suitable conditions for the species in a hot and drier Australia 
in 2070 (Supplementary material Appendix 7). However, this 
species roosts in cave environments that are strongly buffered 
against daily, seasonal and long-term variations in external 
climatic conditions (i.e. environments with relatively con-
stant temperature and humidity). Therefore, the 2070 pre-
dictions of EXT and COMP models might not correspond 
to the real conditions that the species will experience in a hot 
and drier climate future.

Our finding that models with apparently similar 
predictive performance when evaluated against current 
observation data can diverge so much when projected to 
future climates has significant implications for the way 
predictive uncertainty should be represented and results 
used in conservation decision making. The use of extreme 
weather variables known to directly impact species or 
groups of species (mammals in this case) when making 
predictions of future species ranges, permits identifica-
tion of areas in the landscape where species will be more 
or less at threat by extreme weather. This helps iden-
tify future climatic refugia where species could be buff-
ered against extreme events, providing greater chances of 
adapting to long-term changes in average climatic condi-
tions (Reside et al. 2014). However, very few studies that 
analyse the long-term prospects for species under climate 
change account for the potential effect of extreme weather 
conditions. This may be partly due to the fact that, relative 

to data on future mean climate, projections of extremes 
(e.g. length of heatwaves or dry days) are much less com-
monly available (Garcia et al. 2014). The uncertainty aris-
ing from having to choose between models – e.g. model 
types or model predictors – is almost never represented as 
prediction uncertainty or formally considered when assess-
ing conservation options (sensu Moilanen and Wintle 
2006). Our results highlight the importance of incorporat-
ing uncertainty about predictor choice when representing 
SDM prediction uncertainty and interpreting the results of 
climate change impact studies. For several species in this 
study that appeared to be modelled quite well based on cur-
rent data (high AUCs, high deviance reduction), the pre-
dicted 2070 distributions ranged from total loss of suitable 
range through to a substantial increase in range, depending 
on which climate or weather variables were included in the 
model. There remain significant challenges in interpreting 
and acting on such results that will require both further 
validation data (species presence–absence data – which is 
more robust than presence–only data for evaluating predic-
tions, but rarely available at large spatial scales for most 
taxa) and sophisticated decision support approaches to 
explicitly factor in predictive uncertainty. It is well under-
stood that choosing a single-best model for inference and 
prediction about the future of a species is a risky strategy 
(Wintle et  al. 2003, Thuiller et  al. 2009). We advocate 
for thoughtful application of multi-model inference and 
treatment of model-choice uncertainty when predicting 
the future distribution of a species and planning for the 
conservation of species in a rapidly changing world.
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